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Abstract
Text simplification (TS) makes written information more accessible to all people, especially those with cognitive
or language impairments. Despite much progress in TS due to advances in NLP technology, the bottleneck
issue of lack of data for low-resource languages persists. Dutch is one of these languages that lack a mono-
lingual simplification corpus. In this paper, we use English as a pivot language for the simplification of Dutch
medical and municipal text. We experiment with augmenting training data and corpus choice for this pivot-based
approach. We compare the results to a baseline and an end-to-end LLM approach using the GPT 3.5 Turbo
model. Our evaluation shows that, while we can substantially improve the results of the pivot pipeline, the
zero-shot end-to-end GPT-based simplification performs better on all metrics. Our work shows how an existing
pivot-based pipeline can be improved for simplifying Dutch medical text. Moreover, we provide baselines for the
comparison in the domain of Dutch municipal text and make our corresponding evaluation dataset publicly available.
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1. Introduction
Natural language can be difficult to comprehend,
especially when the sentences contain terminol-
ogy or use complex construction. However, such
text can be of great importance to all individuals.
Past research showed that text simplification (TS)
could benefit children (Watanabe et al., 2009) and
people with comprehensive problems or language
disorders, such as autism (Evans et al., 2014) and
dyslexia (Rello et al., 2013). Moreover, simplified
texts can be of great use for non-native learners
and people with low literacy levels (Shojaeizadeh
et al., 2017; Al-Thanyyan and Azmi, 2021). TS
systems are developed to reduce the complexity
of the text and improve its readability and under-
standability (Al-Thanyyan and Azmi, 2021).
Data-driven solutions to text simplification include
statistical and neural machine translation ap-
proaches. Such solutions enable one-step sim-
plification of sentences or longer texts. These
systems treat sentences in a complex language
as the source and aim to translate an input sen-
tence to the targeted simplified language. Gener-
ally speaking, neural solutions are data-intensive
and require a monolingual simplification corpus for
training and evaluation. High-resource languages
such as English have an abundance of corpora
available for translation and simplification. Unfor-
tunately, this is not the case for most low-resource
languages where there are no TS corpora, let
alone domain-specific ones.
This paper focuses on the simplification of munic-
ipal text in Dutch. Due to the lack of datasets
and research in this domain, previous research
on Dutch text simplification was limited to lexi-

cal simplification (Hobo et al., 2023), the use of
commercial tools or user studies for evaluation
(Harmsen and Van Raaij, 2023), or the use of
automatically-generated data without manual veri-
fication (Van de Velde, 2023). As far as the authors
are aware, there is no benchmark. This research
aims to establish the first benchmark for sentence-
level text simplification in the domain of Dutch mu-
nicipal communication.
To alleviate the lack of sufficient training data, a
pivot-based approach can be used as an alterna-
tive. The aim is to take advantage of high-resource
languages such as English by using them as a
pivot in an intermediate step (Evers, 2021). The
pipeline’s results rely on the performance of each
underlying model, for which we need different
kinds of training data. Most recently, the use of
GPT for TS provides a promising zero-shot ap-
proach. For example, it was employed for the
simplification of radiology reports with good results
(Jeblick et al., 2022).
Motivated by these recent advances, we study the
following research questions. RQ1: Can we im-
prove the results of the pivot approach by aug-
menting training data or using alternative transla-
tion corpora? RQ2: How does the pivot pipeline
perform when transferred to the domain of Dutch
municipal communication? RQ3: Can LLMs (such
as GPT) outperform the pivot-based approach?
To answer these research questions, we adapt an
existing pivot-based approach (Evers, 2021) to the
Dutch municipal communication domain and at-
tempt to improve the performance of the models
in this approach. We compare its results against
the corresponding achievements by the state-of-
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the-art language model GPT 3.5 Turbo (OpenAI,
2021). As for evaluation, we use Dutch medical
text and sentences from municipal letters.
Our main contributions are the following: (1) an
adaptation of an existing Dutch medical simplifica-
tion pipeline for the municipal domain, (2) release
of the corresponding Dutch municipal evaluation
data1, (3) means to improve the performance of
the TS approach, and (4) benchmarking and com-
paring the performance of a pivot-based approach
versus an LLM-based approach for TS.2

2. Related Work
Best-performing TS systems conduct both lexical
and syntactic simplifications. Early research on TS
systems introduced and compared the usefulness
of rule-based systems to data-driven approaches
such as statistical and neural machine translation
(Bahdanau et al., 2014). To train a system with
the latter approach, a monolingual parallel corpus
is typically required.
The introduction of the transformer architecture
(Vaswani et al., 2017) has lead to reduced train-
ing times and computational costs, among other
benefits such as the ability to handle longer text
sequences, and is used by many state-of-the-art
natural language systems nowadays. The trans-
former architecture also paved the way for large
language models. Models such as those from the
GPT family are trained on vast amounts of data
and can generate text in various languages. Most
recently, the chatbot model ChatGPT was em-
ployed for the simplification of radiology reports
(Jeblick et al., 2022). This research shows that
most radiologists find the simplified reports factu-
ally correct and complete without potential harm to
the patient.
While the transformer architecture in NLP has im-
proved language models, the problem of scarce
data remains. Due to the lack of training data
for low-resource languages, many solutions have
been proposed to increase the accuracy of trans-
lation systems. One example is back-translation
which generates additional training data (Sennrich
et al., 2015). This approach utilizes a pre-existing
machine translation model. A second model is
trained in the opposite direction, going from the
target language to the source language, and the
sentences generated by it are then used to train
the original system further. This iterative training
approach helps improve the overall performance

1We make the evaluation dataset publicly avail-
able at https://github.com/Amsterdam-AI-Team/
dutch-municipal-text-simplification/ with DOI
10.5281/zenodo.10869317.

2The code, parameter settings, and related
materials are included at https://github.com/
Amsterdam-Internships/Text_Simplification.

and effectiveness of the machine translation sys-
tem. Unfortunately, this method does not apply to
our use case as we do not have any Dutch sim-
plification corpora available in the first place with
which to back-translate more training data.
One of the alternative architectures for TS was
proposed by Evers (2021). The approach, pre-
sented in detail in Section 3, uses a pivot method
to exploit the resources available in languages
with richer data sources (English in this case). The
authors also experiment with a zero-shot transla-
tion approach for the text simplification task, which
requires no explicit parallel corpus between the
source and target language, but is instead trained
on multiple languages using a shared representa-
tion. Although their reported best approach is the
zero-shot approach, the pivot approach provides
higher-level explainability and control, which are
crucial within the municipal domain.

3. Methodology

Figure 1: Pivot pipeline for text simplification

As mentioned, our research builds upon the
pipeline introduced by Evers (2021). First, we fol-
low the pre-processing and tokenization steps as
in the original paper (see Section 4.2 for details).
We replicate the pivot-based approach, improve
the results, and adapt it to the domain of Dutchmu-
nicipal communication. The pivot-based pipeline
consists of three models and is illustrated in Fig-
ure 1. The input data consists of complex Dutch
sentences, which are translated to English by the
first model, referred to as MNL→EN. The second
model, MEN

C→S, turns these complex English sen-
tences into simple English sentences. Finally, the
simplified English sentences are translated back to
Dutch by the third model, referred to as MEN→NL.
The final output is evaluated using the SARI (Xu
et al., 2016), BLEU (Papineni et al., 2002) andME-
TEOR (Banerjee and Lavie, 2005) metrics, which
are adopted from the machine translation field,
and were also used by Evers (2021).
The success of this approach relies on the choice
of corpora and is explained below. The models in
the original medical pipeline of Evers (2021) are
trained on the specialized medical EMEA corpus
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(Tiedemann, 2012) for Dutch to English transla-
tion, theWikiSimple dataset (Coster and Kauchak,
2011) for English TS, and a medical subset of the
OpenSubtitles (Lison and Tiedemann, 2016) for
English to Dutch translation.

3.1. Simple Corpus Choice
The work of Evers is based on the assumption that
theOpenSubtitles corpus is more suitable for train-
ingMEN→NL to translate simple English sentences
back to Dutch. The assumption is based on the
conversational nature of the sentences in the cor-
pus, which should generally be written in a more
accessible language. To determine whether this
assumption is correct, we compare the pipeline to
an almost identical one where the only difference
is the training data used for MEN→NL. Instead of
being trained on a medical subset of the Open-
Subtitles corpus, as proposed by (Evers, 2021),
we train it on the specialized EMEA corpus used
forMNL→EN, only in the opposite direction (English
to Dutch).

3.2. Augmenting Train Data
After replicating Evers’ pipeline, we noticed poor
performance in the initial translation from complex
Dutch to complex English. The model trained on
the EMEA dataset performedwell when translating
complex medical terminology but failed to capture
more general language that was less common in
the training data.
Therefore, to try and improve these results, we
experiment with augmenting the domain-specific
training data of MNL→EN with data from the more
general OpenSubtitles corpus. As in-domain data
selection has been long shown to improve ma-
chine translation systems (Axelrod et al., 2011),
we follow Evers’ methodology and use a medi-
cal subset of OpenSubtitles. This subset is cre-
ated by extracting OpenSubtitles sentences sim-
ilar to the specialized domain, and more specifi-
cally, to the WikiMed dataset (Van et al., 2020).
We experiment with two different approaches to
this. The first one, later denoted as MedSubset
(TF-IDF), is a TF-IDF-based method which would
preserve more sentences containing exact words
from the reference corpus. The second one, de-
noted as MedSubset (BERT), is a BERT-based
method which is expected to retain more diverse
content that is semantically similar to the reference
sentences rather than exact matches. Further de-
tails about the data selection are provided in Sec-
tion 4.1.

3.3. Transferring Pipeline to Municipal
Domain

We also conduct experiments to evaluate the
transferability of the model to a new domain: mu-

nicipal text. To adapt the pipeline to the municipal
domain, we must select a translation corpus con-
taining domain-specific language and topics. We
use the Europarl corpus (Koehn, 2005), as it con-
tains manually translated sentences from Euro-
pean parliamentary proceedings. The simplifica-
tion model MEN

C→S is still trained using WikiSimple
data. As a baseline for MEN→NL, we use a model
trained on a random sample of 1million OpenSub-
titles sentences. We also perform corpus selection
and data augmentation experiments for our mu-
nicipal pipeline to improve results. The former en-
tails testing whether or not it is more beneficial to
use a domain-specific corpus (Europarl) or a more
general corpus (OpenSubtitles) to trainMEN→NL to
translate simplified sentences back to Dutch. The
latter uses TF-IDF and BERT-based MunSubsets
to extend the training data for both the MNL→EN

and MEN→NL directions.
To evaluate the pipelines, a test set is created by
extracting simplifications made to municipal let-
ters. These letters are provided by the City of
Amsterdam, and the simplifications are performed
manually by professional editors. After automati-
cally aligning sentences from the original and sim-
plified letters based on TF-IDF similarity, the final
test set consists of 1310 sentences with lexical and
syntactic simplifications.

3.4. Zero-shot Simplification
We can use OpenAI’s API to leverage the power
of GPT 3.5 Turbo for our TS task. While this model
was not created with the intention of simplification,
LLMs have been shown to be remarkably suited
for many NLP tasks (Bubeck et al., 2023) includ-
ing TS (Feng et al., 2023). We use this model to
simplify our evaluation data and compare these re-
sults to those of the pivot pipelines. Another model
we consider is the zero-shot model described in
the work of Evers (2021). This baseline allows us
to compare the results of end-to-end TS systems
trained without a monolingual Dutch TS corpus.

3.5. Evaluation Metrics
The final output is evaluated using three well-
used metrics in the TS community: BLEU, SARI,
and METEOR. BLEU is based on unigram match-
ing between predicted and target outputs. More
specifically, it compares the predicted simplified
sentence against reference outputs and computes
the similarity based on n-grams. Another popu-
lar metric is SARI, which produces a score based
on the weighted average of three components:
sentence-level unigram precision, sentence-level
unigram recall, and n-gram overlap (Xu et al.,
2016). It compares the predicted sentence with
the original complex and simplified reference sen-
tences. Finally, the METEOR metric computes



the harmonic mean of precision and recall using
exact and stemmed matches between words in
the machine-translated output and reference sen-
tences (Banerjee and Lavie, 2005). More discus-
sions about the effectiveness and limit of these
metrics are included in Section 6.

Domain Dataset Purpose #Pairs
Encyclopedia WikiSimple (Coster and

Kauchak, 2011)
TS 283K

Subtitles OpenSubtitles (Lison and
Tiedemann, 2016)

MT 1.01M

Medical

EMEA (Tiedemann, 2012) MT 308K
WikiMed (Van et al., 2020) Ref 3.39K
MedSubset (TF-IDF) (Lison
and Tiedemann, 2016)

MT 836K

MedSubset (BERT) (Lison
and Tiedemann, 2016)

MT 379K

Medical Eval Set (Evers,
2021)

Eval 101

Parliamentary
EuroParl (Koehn, 2005) MT 1.95M
Dutch Government Website
(European Language Re-
source Coordination, 2015)

Ref 6.53K

Municipal

MunSubset (TF-IDF) (Lison
and Tiedemann, 2016)

MT 559K

MunSubset (BERT) (Lison
and Tiedemann, 2016)

MT 531K

Municipal Eval Set Eval 1.31K

Table 1: Datasets used, their purpose and domain,
and their number of aligned sentences (Ref for ref-
erence for in-domain data selection and Eval for
evaluation)

4. Experimental Design
In this section, we describe the datasets used in
our work, the extraction of in-domain subsets, the
pre- and post-processing of data, as well as some
implementation details.

4.1. Data Gathering and Selection
The datasets used in our paper are summarized
in Table 1. The OpenSubtitles corpus is a large
general corpus containing sentences from vari-
ous domains. It is further processed to extract in-
domain subsets. We extract subsets from it by
mapping sentences from the OpenSubtitles cor-
pus to a vector space and extracting the n near-
est neighbours of each sentence in an in-domain
reference corpus. The dataset used to extract
in-domain sentences for the medical subset was
WikiMed: a medical corpus previously extracted
from the WikiSimple corpus. We use the Dutch
Government Website Corpus as a reference to ex-
tract municipal sentences. It contains texts pub-
lished by the Dutch government. We extract a
fixed number n of nearest neighbour OpenSubti-
tles sentences per reference sentence, aiming to
obtain one million sentences. Our medical refer-
ence corpus contained 3,390 sentences, so n was
set to 294, whereas the municipal reference cor-
pus had 6,532 sentences, so n was set to 153.
We experiment with encoding the sentences us-
ing both a TF-IDF and BERT-based approach.

For the BERT-based approach, we encode sen-
tences using the ‘paraphrase-distilroberta-base-
v1’ model3. This model maps sentences to a 768-
dimensional dense vector space. In this way, we
obtain domain-specific corpora: MedSubset (TF-
IDF), MedSubset (BERT), MunSubset (TF-IDF),
and MunSubset (BERT) as shown in Table 1.

4.2. Data Preprocessing
We follow preprocessing and tokenization steps
similar to those proposed by Evers (2021) The
preprocessing script we used, taken from Yas-
min Moslem’s implementation4, begins by filtering
the data. It removes empty rows, duplicates, and
potentially erroneous translations based on sen-
tence length mismatch, as well as HTML elements
within the sentences. For tokenization, we em-
ployed a fast implementation of byte-pair encod-
ing, YouTokenToMe.5 Subword models are gen-
erated for both the source and target sides of the
data and are used to encode and later decode the
sentences. The data is then shuffled at the sen-
tence pair level and split into train-test-dev splits
to be fed to the models. The size of the test and
dev splits are 2,000 sentences for all models. The
remaining sentences are used for training.

4.3. Implementation
The models used in the pipelines are transformers
implemented using OpenNMT, an open-source
ecosystem for neural machine translation (Klein
et al., 2017). We train the models on a single GPU
using Google Colab.6
After training the models, we perform inference on
the test data, and use the result as input for the
next model in the pipeline.
Furthermore, we obtain simplifications for the
same evaluation data using the GPT 3.5 Turbo
model. We access the model through the OpenAI
API7 and make requests with the prompt: “Can
you simplify the following sentence in
Dutch: {sentence}”. By implementing a delay
of 5 seconds considering the API’s rate limit, all
requests can be completed with a valid answer.
Some manual postprocessing, such as the re-
moval of erroneous new lines, was performed
to fix formatting issues caused by the model’s
conversational nature.

3Model taken from the sentence-transformers library:
https://huggingface.co/sentence-transformers/
paraphrase-distilroberta-base-v1

4https://github.com/ymoslem/MT-Preparation
5https://github.com/VKCOM/YouTokenToMe
6See the code repository for (hyper-)parameters and

other details in the configuration of the models.
7https://platform.openai.com/
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5. Evaluation

5.1. Medical Pipeline Results

In the medical domain, we compare our results to
those by Evers, including their pivot approach and
their end-to-end zero-shot approach. We evaluate
our results qualitatively and quantitatively.

5.1.1. Automated Evaluation
Our implementation of the baseline pipeline
PipeEMEA

MedSubset (BERT) achieved similar SARI and
BLEU scores as the results reported by Evers.
The relatively small difference could be a product
of our aggregation of the scores over multiple runs.
We encountered a significant increase in the ME-
TEOR score of this pipeline in our implementation.
Despite having the largest standard deviation of
our experiments, the difference in scores is still too
large to be explained by this.
The results of the medical pipelines indicate that
both choosing a suitable corpus for translating
the simplified sentences back to Dutch, as well
as augmenting the domain-specific data increased
scores on all metrics.
Our first experiment aimed to test the assumption
that the OpenSubtitles corpus provides more suit-
able training data for translating simple sentences.
While it can be true that, because of its narrative
tone, the OpenSubtitles sentences are simpler,
the results of our experiment indicate that sim-
ply using the EMEA dataset on both MNL→EN and
MEN→NL produced better results when compared
to any of the pipelines which train MEN→NL on an
OpenSubtitles-derived dataset alone. We also ex-
perimented using the OpenSubtitles dataset alone
to train this model in PipeEMEA

OpenSubtitles *. However,
we found worse results on all metrics. A notable
insight from this experiment was the magnitude
of the improvements brought by simply using a
larger amount of training data, indicating the use-
fulness of increasing computational resources for
the practical application of the pipelines.
Our second experiment, where we augmented the
training data of the initial model with medical sub-
sets not only increased word coverage but fluency
in general. Additionally, the results show that the
BERT-based sampling outperformed the TF-IDF-
based sampling on all metrics, most likely due to
introducing more diverse phrases and examples.
Combining the approaches of both experiments
in the PipeEMEA+MedSubset (BERT)

EMEA+MedSubset (BERT) resulted in the best
scores for any combination of PipeXY . The pipeline
trained fully on a combination of the MedSub-
set (BERT) and EMEA datasets achieved SARI,
BLEU, and METEOR scores of 34.14, 15.41, and
40.89, respectively.

5.1.2. Qualitative Analysis
The provided scores do not give insight into the
performance of the individual models, only the fi-
nal results produced by each pipeline. While the
scores indicate fluency, grammaticality and sim-
ilarity to reference sentences, they have many
limitations, and thus, we cannot rely on auto-
mated evaluation metrics alone to rank our results.
Therefore, we analyze some examples of errors
and improvements made by the medical pipelines,
including the quality of intermediate translations.
One of the main reasons we augmented the in-
domain train data is that we noticed errors in the
first translation step that were propagated through-
out the pipeline. These errors were more often re-
lated to general text rather than domain-specific
terminology. For example, in the sentence “Na
de Zwarte Dood en de agrarische depressie aan
het eind van de 15e eeuw, begon de bevolkings-
groei toe te nemen.” (in English: After the Black
Death and the agricultural depression at the end
of the 15th century, population growth began to
increase.), “de 15e eeuw” is translated to “15nd
egggg” in the pipeline PipeEMEA

EMEA. This error is
carried over to the next step and becomes “15nd
egg egggg” after simplification, which is eventually
translated to “15e eieren” (in English: 15th eggs).
This problem is resolved by providing additional
data, as is done e.g. in PipeEMEA+MedSubset(TF-IDF)

EMEA+Medsubset(TF-IDF)
where “century” is correctly translated throughout
all models with coherent final result.
In another example sentence: “De diagnose
van Pulmonale arteriële hypertensie (PAH) vereist
de aanwezigheid van pulmonale hypertensie.’’
(In English: The diagnosis of Pulmonary Ar-
terial Hypertension (PAH) requires the pres-
ence of pulmonary hypertension.), we can see
how introducing MedSubsets improves simplifi-
cation. PipeEMEA

EMEA fails to translate the abbrevi-
ation “(PAH)’’, instead it becomes “íPAH’. This
pipeline also replaces “vereist’’ (requires) with
“verdient’’ (deserves), which does not reflect the
meaning of the original sentence. In contrast,
PipeEMEA+MedSubset(TF-IDF)

EMEA+Medsubset(TF-IDF) removes the abbrevia-
tion entirely while keeping the remainder of the
sentence identical.

5.2. Municipal Pipeline Results
Next, we provide benchmark results in the munic-
ipal domain and compare the pipeline results with
different corpus choices and data augmentation
strategies.

5.2.1. Automated Evaluation
The results of the municipal pipelines, displayed
in Table 2, showed similar trends to those of the
medical pipelines. We can see that scores in-
crease when using the domain-specific MunSub-



System SARI BLEU METEOR
Mean SD Mean SD Mean SD

M
ed
ic
al
Pi
pe
lin
e

PipeEMEA
MedSubset (BERT) (Evers, 2021) 33.32 5.28 10.63

PipeEMEA
OpenSubtitles∗ 29.55 (31.77) 0.36 (0.72) 5.18 (8.59) 1.00 (1.08) 22.71 (30.31) 1.88 (2.53)

PipeEMEA
MedSubset (TF-IDF) * 30.15 (30.44) 0.52 (0.49) 5.66 (7.13) 0.89 (0.53) 25.45 (25.05) 0.74 (0.60)

PipeEMEA
MedSubset (BERT) * 30.59 (30.83) 0.50 (1.27) 6.82 (6.87) 0.51 (0.57) 27.79 (28.8) 0.55 (2.82)

PipeEMEA
EMEA 32.52 0.79 11.44 1.2 35.27 0.9

PipeEMEA
EMEA + MedSubset (BERT) 32.69 0.16 11.45 0.43 35.49 0.68

PipeEMEA + MedSubset (TF-IDF)
EMEA + Medsubset (TF-IDF) 33.91 0.98 15.15 1.1 40.45 1.57

PipeEMEA + MedSubset (BERT)
EMEA + MedSubset (BERT) 34.14 0.20 15.41 0.83 40.89 0.21

Zero-Shot Baseline (Evers, 2021) 40.04 27.19 31.19

GPT 3.5 Turbo 40.26 2.73 21.23 2.67 47.49 3.56

M
un

ic
ip
al
Pi
pe
lin
e

PipeEuroparlOpenSubtitles * 24.64 (24.13) 0.52 (2.11) 7.72 (6.82) 0.86 (3.12) 29.34 (29.2) 1.74 (1.77)

PipeEuroparlMunSubset (TF-IDF) * 25.66 (25.93) 0.3 (0.15) 9.09 (9.53) 0.57 (0.26) 31.50 (32.38) 1.09 (0.50)

PipeEuroparlMunSubset (BERT) * 27.70 (27.69) 0.06 (0.26) 12.79 (13.1) 0.33 (0.32) 38.26 (37.93) 0.09 (0.31)

PipeEuroparlEuroparl 23.57 0.03 6.13 0.28 25.54 0.19

PipeEuroparlEuroparl + MunSubset (BERT) 28.7 1.39 14.83 3.00 40.44 3.65

PipeEuroparl+MunSubset (TF-IDF)
Europarl + MunSubset (TF-IDF) 29.87 0.24 16.36 0.40 43.26 0.14

PipeEuroparl+MunSubset (BERT)
Europarl + MunSubset (BERT) 29.83 0.17 17.12 0.16 43.32 0.27

GPT 3.5 Turbo 34.00 0.59 22.60 0.78 48.63 0.70

Table 2: Automated evaluation of Medical and Municipal Pipelines.
Pipelines are denoted in the form PipeXY where X and Y represent the training data for models MNL→EN and MEN→NL, respectively. For a fair
comparison, for rows with * label, we used datasets reduced to 320K sentences for medical pipelines. Similarly, that of municipal pipelines has
been reduced to 500K sentences. In the parenthesis are the results when taking the entire datasets in training. The best results are highlighted in
bold font. The best results of our approach and the lowest standard deviation scores are highlighted with underlines.

sets forMEN→NL rather than a general corpus such
as OpenSubtitles. Once again, the BERT-based
selection outperformed TF-IDF-based one, sug-
gesting that extracting sentences based on se-
mantic meaning rather than exact lexical matches
provides more suitable training data. Surprisingly,
the Europarl corpus by itself did not outperform
either of the MunSubset corpora in the way that
the EMEA corpus outperformed the MedSubsets.
One explanation for this could be the similarity of
the reference corpora to our domain. The refer-
ence sentences used for MunSubsets came from
an ELRC dataset, which comprises just over 6500
sentences from texts published by the Dutch gov-
ernment. This domain aligns well with the domain
of the test set, which contains sentences from
documents published by the City of Amsterdam.
In contrast, the medical reference contains fewer
sentences (approximately 3,300), which are au-
tomatically extracted from the WikiSimple corpus.
The combination of fewer examples and those not
being as targeted towards the test domain may
have contributed to them increasing the evaluation
scores by less than the MunSubsets did. For this
reason, using only the Europarl corpus, which con-

tains more general governmental data rather than
municipal, for the MEN→NL may not have outper-
formed using the MunSubsets.
Similarly to the medical domain, augmenting
the Europarl corpus with in-domain subsets of
the general corpus brings improvements in all
scores. Once again, the pipeline combining
both approaches – that is, incorporating the Eu-
roparl+MunSubset(BERT) training data for both
translation models – achieved the highest BLEU
and METEOR scores of any combination of
PipeXY . Additionally, it achieves the second-
highest SARI score, falling just 0.04 short of the
TF-IDF version of the same pipeline.

5.2.2. Qualitative Analysis
One improvement made by incorporating the Mun-
Subset datasets was the coverage of domain-
specific terminology. For the sentence “Stuur je
aanvraagformulier dan naar” (in English: Send
your application form to), we can see how bolster-
ing the initial translationmodel with theMunSubset
(TF-IDF) data increases performance. When the
initial model, MNL→EN, is trained on the Europarl
dataset only, the term “aanvraagformulier” is er-



roneously translated as “applicant form” instead
of “application form”. This small error results in
the final output producing the word “solicitatiefor-
mulier”. In the pipeline PipeEuroparl+MunSubset (TF-IDF)

Europarl+MunSubset (TF-IDF),
where the initial training data is supplemented with
the MunSubset data, this initial mistake does not
occur. As a result, the term is handled correctly
throughout all models in the pipeline. On top of
increasing coverage of vocabulary, the general
accuracy of simplifications is improved in other
ways. For example, the first pipeline also incor-
rectly introduces a negation into the sentence,
which heavily affects the preservation of meaning.
The tone of the training data can also affect simpli-
fications. For example, in the sentence “Wij kun-
nen ons ook voorstellen dat je nog niet weet wat
je wil of gewoon graag even overlegt.” (in English:
We can also imagine that you might not yet know
what you want or just would like to discuss it for
a bit.) the informal pronoun “je” is replaced with
the more formal “u” by PipeEuroparl+MunSubset (BERT)

Europarl+MunSubset (BERT).
Moreover, the phrase “gewoon graag even over-
legt” is changed to “wilt raadplegen” making the
sentence more concise. This more closely resem-
bles the register used in parliamentary proceed-
ings than conversational language.

5.3. Numerical Information Preservation
Throughout our results, we noticed errors that
arose when translating and dealing with numbers,
particularly in cases where numbers had some for-
matting, for instance, “3-5%” This was a recurring
concern in our pipelines, and it is a common issue
with neural machine translation systems, which
has been documented in, for example, the work
of Wang et al. (2021). Their work found that state-
of-the-art and major commercial systems in both
high- and low-resource languages struggle with
this. It is important to note that factual informa-
tion should be preserved, especially given the do-
mains we are dealing with. Mistaken numbers can
be crucial for both medical and municipal texts.
As a primitive examination, wemanually check nu-
merical data. For the small medical test set, con-
sisting of only 101 sentences, we used all 23 sen-
tences that contain digits. For the larger munici-
pal data (1310 sentences), we randomly selected
50 sentences containing digits and manually com-
pared the source and output. Wemarked cases as
correct where numbers were correctly conveyed
(either as digits or text). For numeric correct-
ness in the medical data, GPT achieved an accu-
racy of 0.88, while the best-performaning pipeline
PipeEMEA+MedSubset (BERT)

EMEA + MedSubset (BERT) scored 0.72. For mu-
nicipal data, GPT achieved an outstanding 0.96
while PipeEuroparl + MunSubset (BERT)

Europarl + MunSubset (BERT) gets an accuracy
of 0.87. The results indicate that GPT is better
at preserving the numerical information present in

the source sentences.

5.4. Simplicity Evaluation
The BLEU, SARI, and METEOR metrics measure
the similarity between the system’s outputs and
the reference sentences, but they do not directly
evaluate the simplicity of the generated sentences.
Therefore, we compare the outputs of our best-
performing pivot pipeline and end-to-end models
based on their Flesch Reading Ease (FRE) score
(Flesch, 1948), which considers both the number
of words per sentence and the number of syllables
per word. According to the definition, more read-
able texts score higher on this metric.
On the medical data GPT achieves a score
of 57.76 in comparison to 51.84 by the best-
performing pipeline PipeEMEA + MedSubset (BERT)

EMEA + MedSubset (BERT). For
municipal data, GPT has a remarkable score of
65.20, which is higher than the 63.27 by the best-
performing pipeline PipeEuroparl+MunSubset (BERT)

Europarl + MunSubset (BERT).
On average, GPT’s simplifications contain fewer
words per sentence and fewer syllables per word
than the simplifications made by our pivot pipeline.
What is interesting is the degree to which they dif-
fer. In the medical domain, the difference between
results achieved by GPT and our pivot model is
substantially greater than the differences we found
in the municipal domain. The notably close read-
ing ease scores in the municipal domain lead us
to believe that training the models of the pivot
pipeline on a larger amount of data has the po-
tential of outperforming GPT on this aspect.

6. Discussion
In this section, we discuss some of the limitations
of the pivot-based pipelines and reflect on the eval-
uation results regarding our research questions.

6.1. Pivot-based Pipeline
The experiments in this paper can serve as a val-
idation of some of the assumptions made in the
work of (Evers, 2021) regarding corpus choices.
The results provide insight into RQ1, demonstrat-
ing that both augmenting the in-domain training
data of the initial model, as well as selecting
a more suitable dataset for the final model can
improve the simplification results. Overall, the
pipeline is highly susceptible to bad results when
mistakes are made in the first model (MNL→EN).
Mistakes propagate through the pipeline, resulting
in worse and worse translations. These mistakes
were amplified by the lack of suitable, domain-
specific training data in the final model, translating
simple English sentences back to Dutch.
We found that bolstering the in-domain corpora
with extracted subsets improved scores. Ad-
ditionally, despite not having a large initial in-
domain corpus, extraction of semantically and lex-



ically similar sentences from a general corpus
can substantially improve results. Introducing in-
domain subsets always outperformed using a ran-
dom OpenSubtitles dataset. Our experiments in-
dicate that combining domain-specific data with an
in-domain subset of a general corpus increased
word coverage, reducing the propagation of cer-
tain errors throughout the pipeline.
Regarding RQ2, our results indicate the adaptabil-
ity of the pipeline to other complex domains. We
observed overall similar evaluation results in the
metrics after the adaption of the pipeline to the
Dutch municipal domain: more concretely, a slight
increase in BLEU and METEOR with a decrease
in SARI. There are many potential reasons for this.
For example, the test set used for the medical do-
main is significantly smaller in size but with higher
quality (101 v.s. 1,310 sentences). Being au-
tomatically extracted, sentences in the municipal
test set might be incomplete or contain spelling er-
rors, which can add difficulty to simplification but
also impact the evaluation scores.
Altogether, the changes in the scores of the
pipeline in both domains we observed were similar
with regard to the modification of the training data.
This indicates the generalizability of the pipeline
and its improvements to different domains.

6.2. Large Language Models

To address RQ3, we performed experiments with
the GPT 3.5 Turbo model. We found that its use
has many benefits. First of all, it does not re-
quire new domain-specific data. Moreover, there
is no need for a pivot language. This also re-
duces the risk of propagating errors through mul-
tiple models. Furthermore, there is no additional
training needed, which can be time- and resource-
saving. GPT has great potential for use in other
low-resource languages and tasks, given its uni-
versal purpose. Moreover, we noticed that the
generated sentences are fluent, which is not al-
ways the case for other models.
However, there are multiple downsides to this ap-
proach. To the users, GPT is a black box, and the
developers would have less control over the sys-
tem. Also, GPT does not always give exactly iden-
tical answers for the same input (unless specified
otherwise), which can introduce unwanted vari-
ability. Our manual examination found that GPT
lacks a fundamental understanding and knowl-
edge of some domain-specific concepts and ab-
breviations. Finally, although GPT demonstrates
remarkable scores on a common readability mea-
sure, our findings within themunicipal domain sug-
gest that a pivot pipeline, including an explicit sim-
plification step, has significant potential to surpass
GPT in this regard.

6.3. Evaluation Metrics
Despite the wide use of machine translation met-
rics for text simplification, their suitability for the
task has been extensively questioned and crit-
icized, e.g. by Alva-Manchego et al. (2021).
The metrics are designed to judge the qual-
ity of machine-translated text by comparing the
predicted output to one or more reference sen-
tences. This makes our results highly dependent
on the available evaluation data. Moreover, higher
scores do not always mean that the results are
simpler. For example, suitable simplifications that
drastically change the vocabulary or structure of
the sentence may be punished.
BLEU was sometimes found to have a nega-
tive correlation with simplification, especially when
scoring sentences whose structure has changed
(Sulem et al., 2018). SARI scores are calculated
based on the goodness of the three core transla-
tion operations; sentence-level addition, deletion,
and keep operations. It compares the predicted
sentence with the original complex and simplified
reference sentences. SARI captures the fluency
and paraphrasing of the translation at the sen-
tence level. For instance, if the candidate transla-
tion adds or deletes words in a way that aligns with
the reference while preserving the original mean-
ing, it would receive a higher SARI score. How-
ever, even with flawless simplification, the pre-
dicted sentence may not achieve a perfect score if
it differs from the reference.
METEOR evaluates the similarity between the
candidate translation and the reference transla-
tions by aligning the words and considering the ex-
act and stem matches between the predicted and
reference translations. In the English implementa-
tion of METEOR, unigrams can also be matched
according to meaning. This means that the choice
of words used for simplification can still be re-
warded. Unfortunately, this does not exist in the
Dutch implementation of METEOR. Therefore, re-
placing complex words with synonyms will be pun-
ished, regardless of whether the synonym is sim-
pler or not.

7. Conclusion and Future Work
In this paper, we demonstrated how appropriate
corpus choices and data augmentation can im-
prove the performance of Evers’s pivot-based TS
system (RQ1). Regarding RQ2, we adapted the
pipeline from the medical domain to the Dutch mu-
nicipal communication domain. We provided the
first TS benchmark for Dutch municipal commu-
nication and published our evaluation data. For
RQ3, our evaluation showed that GPT can achieve
better scores than pivot-based pipelines for Dutch
municipal text. We discussed the drawbacks of
both approaches and the limits of themetrics used.



In the future, some new metrics could be designed
to overcome the drawbacks mentioned in Sec-
tion 6. We could also explore other measures
that reflect simplicity. For the municipal domain,
it is crucial that the simplified information remains
factual so the metrics can cover the preservation
of numbers and other factual information (street
name, date, opening time).
The main bottleneck of Dutch municipal text sim-
plification is the lack of a corresponding training
dataset. The availability of larger Dutch simplifica-
tion datasets would allow the development of end-
to-end models.
Our work shows great potential for using LLMs for
TS. Further research with GPT 3.5 Turbo could
investigate the effect of fine-tuning the model us-
ing the above-mentioned dataset. With its help, a
dataset could be constructed semi-automatically.
Future work also includes enriching the bench-
mark by comparing our work with existing transla-
tion models and alternating our pipeline with other
models (e.g. M2M100 (Fan et al., 2021), NLLB200
(Costa-jussà et al., 2022)).
Finally, both approaches can be used in munici-
pal and medical cases in real life to provide a draft
translation, which can ease the work of the edi-
tors. If widely used, larger datasets of human-
verified simplified sentences are expected to be
constructed, which can be used for future re-
search.

8. Acknowledgment
The authors appreciate the contribution of the
Communications Department of the City of Am-
sterdam for providing the original documents used
to extract the sentence alignments.

9. Bibliographical References

Suha S. Al-Thanyyan and Aqil M. Azmi. 2021.
Automated text simplification: A survey. ACM
Comput. Surv., 54(2).

Fernando Alva-Manchego, Carolina Scarton, and
Lucia Specia. 2021. The (un) suitability of auto-
matic evaluation metrics for text simplification.
Computational Linguistics, 47(4):861–889.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.
2011. Domain adaptation via pseudo in-domain
data selection. In Proceedings of the 2011 con-
ference on empirical methods in natural lan-
guage processing, pages 355–362.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005. Me-
teor: An automatic metric for MT evaluation with
improved correlation with human judgments. In
Proceedings of the acl workshop on intrinsic
and extrinsic evaluation measures for machine
translation and/or summarization, pages 65–72.

Sébastien Bubeck, Varun Chandrasekaran, Ro-
nen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott
Lundberg, et al. 2023. Sparks of artificial gen-
eral intelligence: Early experiments with gpt-4.
arXiv preprint arXiv:2303.12712.

Marta R Costa-jussà, James Cross, Onur Çelebi,
Maha Elbayad, Kenneth Heafield, Kevin Heffer-
nan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, et al. 2022. No language left be-
hind: Scaling human-centered machine transla-
tion. arXiv preprint arXiv:2207.04672.

Richard Evans, Constantin Orasan, and Iustin
Dornescu. 2014. An evaluation of syntactic sim-
plification rules for people with autism. Associ-
ation for Computational Linguistics.

Marloes Evers. 2021. Low-resource neural ma-
chine translation for simplification of dutch med-
ical text. Master’s thesis, Tilburg University.
Available at http://arno.uvt.nl/show.cgi?
fid=158729.

Angela Fan, Shruti Bhosale, Holger Schwenk,
Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal,
Mandeep Baines, Onur Celebi, Guillaume Wen-
zek, Vishrav Chaudhary, et al. 2021. Be-
yond english-centric multilingual machine trans-
lation. Journal of Machine Learning Research,
22(107):1–48.

Yutao Feng, Jipeng Qiang, Yun Li, Yunhao Yuan,
and Yi Zhu. 2023. Sentence simplification
via large language models. arXiv preprint
arXiv:2302.11957.

Rudolf Flesch. 1948. The Art of Readable Writing.
Harper, New York.

Frank Harmsen and Nadine Van Raaij.
2023. Automatic simplification of dutch
texts. https://www.brightlands.com/
sites/default/files/2023-09/BSSC%
20-%20Project%20Report%20ELSA%20lab%
20versie%202.0%20-%20ENG.pdf.

Eliza Hobo, Charlotte Pouw, and Lisa Beinborn.
2023. “geen makkie”: Interpretable classifica-
tion and simplification of dutch text complexity.
In Proceedings of the 18th Workshop on Inno-
vative Use of NLP for Building Educational Ap-
plications (BEA 2023), pages 503–517.

https://doi.org/10.1145/3442695
http://arno.uvt.nl/show.cgi?fid=158729
http://arno.uvt.nl/show.cgi?fid=158729
https://www.brightlands.com/sites/default/files/2023-09/BSSC%20-%20Project%20Report%20ELSA%20lab%20versie%202.0%20-%20ENG.pdf
https://www.brightlands.com/sites/default/files/2023-09/BSSC%20-%20Project%20Report%20ELSA%20lab%20versie%202.0%20-%20ENG.pdf
https://www.brightlands.com/sites/default/files/2023-09/BSSC%20-%20Project%20Report%20ELSA%20lab%20versie%202.0%20-%20ENG.pdf
https://www.brightlands.com/sites/default/files/2023-09/BSSC%20-%20Project%20Report%20ELSA%20lab%20versie%202.0%20-%20ENG.pdf


Katharina Jeblick, Balthasar Schachtner, Jakob
Dexl, Andreas Mittermeier, Anna Theresa
Stüber, Johanna Topalis, Tobias Weber, Philipp
Wesp, Bastian Sabel, Jens Ricke, and Michael
Ingrisch. 2022. Chatgpt makes medicine easy
to swallow: An exploratory case study on sim-
plified radiology reports.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. Open-
NMT: Open-source toolkit for neural machine
translation. In Proceedings of ACL 2017, Sys-
tem Demonstrations, pages 67–72, Vancouver,
Canada. Association for Computational Linguis-
tics.

OpenAI. 2021. ChatGPT 3.5.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th annual meeting of the As-
sociation for Computational Linguistics, pages
311–318.

Luz Rello, Ricardo Baeza-Yates, Stefan Bott, and
Horacio Saggion. 2013. Simplify or help? text
simplification strategies for people with dyslexia.
In Proceedings of the 10th International Cross-
Disciplinary Conference on Web Accessibility,
pages 1–10.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2015. Improving neural machine trans-
lation models with monolingual data. arXiv
preprint arXiv:1511.06709.

Mina Shojaeizadeh, Soussan Djamasbi, Ping
Chen, and John Rochford. 2017. Text simpli-
fication and pupillometry: an exploratory study.
In Augmented Cognition. Enhancing Cognition
and Behavior in Complex Human Environments:
11th International Conference, AC 2017, Held
as Part of HCI International 2017, Vancouver,
BC, Canada, July 9-14, 2017, Proceedings, Part
II 11, pages 65–77. Springer.

Elior Sulem, Omri Abend, and Ari Rappoport.
2018. Bleu is not suitable for the eval-
uation of text simplification. arXiv preprint
arXiv:1810.05995.

Charlotte Van de Velde. 2023. Automatic
sentence-level simplification for dutch. Mas-
ter’s thesis, KU Leuven, Faculteit Inge-
nieurswetenschappen. Available at https:
//kuleuven.limo.libis.be/discovery/
fulldisplay?docid=alma9993576736601488&
context=L&vid=32KUL_KUL:KULeuven.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural in-
formation processing systems, 30.

Jun Wang, Chang Xu, Francisco Guzmán, Ahmed
El-Kishky, Benjamin Rubinstein, and Trevor
Cohn. 2021. As easy as 1, 2, 3: Behavioural
testing of NMT systems for numerical transla-
tion. In Findings of the Association for Compu-
tational Linguistics: ACL-IJCNLP 2021, pages
4711–4717, Online. Association for Computa-
tional Linguistics.

Willian Massami Watanabe, Arnaldo Candido Ju-
nior, Vinícius Rodriguez Uzêda, Renata Pontin
de Mattos Fortes, Thiago Alexandre Salgueiro
Pardo, and Sandra Maria Aluísio. 2009. Fa-
cilita: reading assistance for low-literacy read-
ers. In Proceedings of the 27th ACM interna-
tional conference on Design of communication,
pages 29–36.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimiz-
ing statistical machine translation for text sim-
plification. Transactions of the Association for
Computational Linguistics, 4:401–415.

10. Language Resource References

William Coster and David Kauchak. 2011. Sim-
ple english wikipedia: a new text simplification
task. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies, pages 665–
669.

European Language Resource Coordination.
2015. ”Dutch Government Website Corpus”.
ELRC Data - Tools and Resources for CEF
Automated Translation-LOT3. [link].

Koehn, Philipp. 2005. Europarl: A parallel corpus
for statistical machine translation.

Lison, Pierre and Tiedemann, Jörg. 2016. Open-
dubtitles2016: Extracting large parallel corpora
from movie and tv subtitles. European Lan-
guage Resources Association.

Jörg Tiedemann. 2012. Parallel data, tools and
interfaces in OPUS. European Language Re-
sources Association (ELRA).

Van, Hoang and Kauchak, David and Leroy,
Gondy. 2020. AutoMeTS: the autocomplete for
medical text simplification.

http://arxiv.org/abs/2212.14882
http://arxiv.org/abs/2212.14882
http://arxiv.org/abs/2212.14882
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://platform.openai.com/docs/models/gpt-3-5
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9993576736601488&context=L&vid=32KUL_KUL:KULeuven
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9993576736601488&context=L&vid=32KUL_KUL:KULeuven
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9993576736601488&context=L&vid=32KUL_KUL:KULeuven
https://kuleuven.limo.libis.be/discovery/fulldisplay?docid=alma9993576736601488&context=L&vid=32KUL_KUL:KULeuven
https://doi.org/10.18653/v1/2021.findings-acl.415
https://doi.org/10.18653/v1/2021.findings-acl.415
https://doi.org/10.18653/v1/2021.findings-acl.415
https://elrc-share.eu/repository/browse/dutch-government-website/5958b44a1c0f11e6b68800155d020502f14b5969313b4a9a9c7ca0a2fdb6ba72/

	Introduction
	Related Work
	Methodology
	Simple Corpus Choice
	Augmenting Train Data
	Transferring Pipeline to Municipal Domain
	Zero-shot Simplification
	Evaluation Metrics

	Experimental Design
	Data Gathering and Selection
	Data Preprocessing
	Implementation

	Evaluation
	Medical Pipeline Results
	Automated Evaluation
	Qualitative Analysis

	Municipal Pipeline Results
	Automated Evaluation
	Qualitative Analysis

	Numerical Information Preservation
	Simplicity Evaluation

	Discussion
	Pivot-based Pipeline
	Large Language Models
	 Evaluation Metrics

	Conclusion and Future Work
	Acknowledgment
	Bibliographical References
	Language Resource References

