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Abstract
Knowledge graphs are being used for the detection of money laundering, insurance fraud, and other suspicious activities.
Some recent work demonstrated how knowledge graphs are being used to study the impact of the COVID-19 outbreak
on the economy. The fact that knowledge graphs are being used in more and more interdisciplinary problems calls for a
reliable source of interdisciplinary knowledge. In this paper, we study the integration of knowledge graphs in the domains of
economics, banking, and finance. Our integrated knowledge graph has over 610K nodes and 1.7 million edges. By performing
statistical and graph-theoretical analysis, we demonstrate how the integration results in more entities with richer information.
Its quality was examined by analyzing the subgraphs of the identity links and (pseudo-)transitive relations. Finally, we study
the sources of error, and their refinement and discuss the benefit of our integrated graph.
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1. Introduction
The 2008 financial crisis urged early detection of systemic
risk to national and world economies in derivatives mar-
kets. The relative size of these markets is a fundamental
risk to geopolitical as well as economic security [1]. One
of the trendy tools that can be used for the modelling of
relations between companies and their economic behav-
ior is knowledge graph. Knowledge graphs show great
potential in use as they can represent companies struc-
tured in complex shareholdings, as well as information
about investment, acquisition, bankruptcy, etc. Shao et al.
used knowledge graphs of real financial data where nodes
are customer, merchant, building, etc. The edges can be
transactions between customers, residential information
about customers, etc. As a benefit of the graphical struc-
ture, their knowledge graph captures interrelations and
interactions across tremendous types of entities more
effectively than traditional methods. They performed
extensive experiments and demonstrated the usage of
knowledge graphs in the consumer banking sector [2].
Bellomarini et al. address the impact of the COVID-
19 outbreak on the network of Italian companies using
knowledge graphs of millions of nodes [3]. Such projects
require multiple types of domain knowledge, from com-
pany ownership to public health policy, from bankruptcy
to social resilience. The essence of such knowledge be-
comes clear for strategy formation and policy making
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based on the dynamics of complex inter-connected sys-
tems. Unfortunately, many sources of knowledge were
developed independently of each other. Fusing these in-
dependent KGs could lead to a significantly richer source
of knowledge which could improve the performance of
existing applications. In this paper, we study proper-
ties of the integration of knowledge graphs by analyzing
the statistical and graph-theoretical properties. More
specifically, we study properties of integrated knowledge
graphs by combining existing knowledge graphs in the
domains of economics, banking, and finance.
Finance The Financial Industry Business Ontology

(FIBO) [4] includes formal models that are intended to de-
fine unambiguous shared meaning for financial industry
concepts. Another popular ontology is the Financial Reg-
ulation Ontology (FRO), which has been used as a higher
level, core ontology for ontologies such as the Insurance
Regulation Ontology1 (IRO), the Fund Ontology2, etc.
Economics The STW (Standard Thesaurus

Wirtschaft) Thesaurus for Economics was devel-
oped by the German National Library of Economics
(ZBW) and gained popularity in scientific institutes,
libraries and documentation centers, as well as business
information providers. The JEL classification system was
initially developed for use in the Journal of Economic
Literature (JEL) [5] and is now a standard method of
classifying scholarly literature in the field of economics.

Banking Knowledge graphs have attracted increasing
attention in the banking industry over the past decade.
The WBG Taxonomy3 includes 3,882 concepts. It serves
as a small classification schema which represents the con-
cepts used to describe the World Bank Group’s topical

1https://insuranceontology.com/
2https://fundontology.com/
3https://vocabulary.worldbank.org/PoolParty/wiki/taxonomy
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knowledge domains and areas of expertise, providing
an enterprise-wide, application-independent framework.
In comparison, the Bank Regulation Ontology (BRO) is
much bigger and uses two industrial standards, namely
FIBO and LKIF [6], as its upper ontology. It was built on
top of the FRO ontology, as mentioned above. Unfortu-
nately, many knowledge graphs are developed by banks
and are not open source.

In this paper we study properties of integrated knowl-
edge graphs in the domain of economics, banking and
finance. Our results show that even though the integrated
knowledge graph has some errors which have been cre-
ated due to minor mistakes, the overall usefulness has
been improved. Our contributions are:

a) We integrate some knowledge graphs in the domain
of economics, banking, and finance and present the inte-
grated knowledge graph consisting of over 610K entities
and 1.7 million triples4.

b) We study how the integration can enrich the in-
formation of entities with some statistical and graph-
theoretical analysis.

c) We discuss the source of error and its refinement of
the integrated knowledge graph for future use.

The paper is organised as follows: Section 2 presents
the knowledge graphs and their statistics. Section 3
presents details of the integrated knowledge graph with
an analysis of the source of error, followed by a discus-
sion. Finally, we draw the conclusion in Section 4.

2. Integrating Knowledge Graphs
A knowledge graph 𝐺 = ⟨𝑉,𝐸, 𝐿, 𝑙⟩ is a directed and
labelled graph, where 𝑉 is the set of nodes, 𝐸 ⊆ 𝑉 × 𝑉
the set of edges, and 𝐿 is the set of edge labels. A function
𝑙 : 𝐸 → 2𝐿 assigns to each edge a set of labels from 𝐿.
The nodes 𝑉 can be IRIs, literals, or blank nodes. The
edges 𝐸 are relations between nodes and their types in
the form of triples. Ontologies are semantic models of
data that define the entities, their properties and types,
types and subtyping, as well as relations between entities.
An ontology can be represented as a knowledge graph.

An integrated knowledge graph G = ⟨V,E,L, l⟩
is a combination of a set of 𝑁 knowledge graphs
{𝐺1, . . . , 𝐺𝑁} where V = 𝑉1 ∪ . . . ∪ 𝑉𝑁 , E = 𝐸1 ∪
. . .∪𝐸𝑁 , and L = 𝐿1∪ . . .∪𝐿𝑁 . A function l : E → 2l

assigns to each edge a set of labels, which is the union
of the labels: l(𝑒) = 𝑙1(𝑒) ∪ . . . ∪ 𝑙𝑁 (𝑒). For a given set
relations R, the subgraph is the graph GR with L = R.
When R = {𝑟}, GR = G𝑟 . Often times, such an integra-
tion requires the process of determining correspondences
between concepts in ontologies. Such a process is called

4The data and Python scripts are available at https://github.com/
shuaiwangvu/EcoFin-integrated.

ontology alignment and the set of correspondences is
called a mapping or an alignment.

By integrating knowledge graphs of various domains,
we expect more entities and richer information for enti-
ties. The following is a list of 11 knowledge graphs we
collected from 9 projects in the domains of economics,
banking, and finance.

1. the Financial Industry Business Ontology (we col-
lected the FIBO ontology using OWL and FIBO
vocabulary using SKOS)5

2. the Financial Regulation Ontology (FRO)6

3. the Hedge Fund Regulation (HFR) ontology7

4. the Legal Knowledge Interchange Format (LKIF)
ontology8

5. the Bank Regulation Ontology (BRO)9

6. the Financial Instrument Global Identifier (FIGI)10

7. the STW Thesaurus for Economics (and its map-
pings)11

8. the Journal of Economic Literature (JEL) classifi-
cation system12

9. the Fund Ontology13

Not all knowledge graphs are available: some are not
open source (e.g., the Italian Ownership Graph [3]), some
others are commercial (e.g., the enterprise knowledge
graphs by Agnos.ai14) and a few are not maintained any-
more (e.g., the OntoBacen project [7]).

We used LogMap15 for the alignment between knowl-
edge graphs [8]. LogMap is a highly scalable ontology
matching system with ‘built-in’ reasoning and inconsis-
tency repair capabilities. It can efficiently match semanti-
cally rich ontologies containing tens (and even hundreds)
of thousands of classes. Considering the size of our files,

5The product version retrieved from https://edmconnect.
edmcouncil.org/fibointerestgroup/fibo-products/fibo-owl (147
files in Turtle format) and https://edmconnect.edmcouncil.org/
fibointerestgroup/fibo-products/fibo-voc (1 file in Turtle format)
respectively on 14th January, 2022.

632 Turtle files were retrieved from https://finregont.com/
ontology-directory-files-prefixes/ on 14th Janurary, 2022.

712 Turtle files were retrieved from https://hedgefundontology.
com/ontology-files/ on 14th January, 2022

8Retrieved from http://www.estrellaproject.org/lkif-core/
#download on 30th January, 2022.

916 Turtle files were retrieved from https://bankontology.com/
ontology-directory-files-prefixes/ on 30th January, 2022.

104 RDF files were retrieved from https://www.omg.org/spec/
FIGI/ on 22nd December, 2021.

11The paper used STW v9.12 based on the SKOS ontology. The
ontology and its 9 mappings files were retrieved from https://zbw.eu/
stw/version/latest/download/about.en.html on 30th Janurary, 2022.

12The Turtle file was retrieved from https://zbw.eu/beta/external_
identifiers/jel/about on 30th January, 2021.

13The paper used 8 Turtle files retrieved from https://
fundontology.com/ontology-files/ on 28th December, 2021.

14https://agnos.ai/services
15http://krrwebtools.cs.ox.ac.uk/logmap/
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Table 1
Alignment of knowledge graphs

FIBO-
vD

FIBO-
OWL

LKIF FIGI STW JEL Fund

FIBO-
vD

- 599 1 147 12 204 11

FIBO-
OWL

- - 24 516 5 57 70

LKIF - - - 1 0 0 23
FIGI - - - - 0 34 2
STW - - - - - 2 0
JEL - - - - - - 1
Fund - - - - - - -

Table 2
General statistics of knowledge graphs

Name |V| |E| Size

FIBO-vD 17,547 28,128 3.1MB
FIBO-OWL 103,288 250,002 16MB

FRO 94,215 283,976 16MB
HFR 14,235 34,771 2.6MB
LKIF 1,005 2,363 141KB
BRO 259,074 838,007 43MB
FIGI 12,180 16,434 822KB
STW 51,128 113,276 3.4MB
JEL 12,109 177,57 1.1MB
Fund 10,119 35,005 3.2MB

STW-mappings 78,398 177,603 11MB
alignment 2,327 1,698 255KB
integrated 610,866 1,778,755 93MB

we used the version with mapping repair but not the aid
of any reasoner. Unfortunately, FRO, BRO, and HFR failed
to load due to parsing errors in some files they import.
Table 1 summarizes the number of pairs of entities gen-
erated by LogMap. Overall, 1,698 unique identity links of
skos:exactMatch were added to the integrated graph.

All the knowledge graphs were first converted to Tur-
tle format and then used the RDFpro16 [9] for the integra-
tion process with duplicated triples removed. RDFpro is
an open source stream-oriented toolkit for the processing
of RDF triples. We used RDFpro (version 0.6) without
smushing. The integration took 23 seconds on a 2.2 GHz
Quad-Core i7 laptop with a 16GB memory running Mac
OS. All the files were then converted to their HDT format
for further experiments. The integrated knowledge graph
consists of 1,778,755 unique triples (edges) and 610,866
nodes. It has 93MB and 22MB in its Turtle and HDT for-
mat respectively. Table 2 summarize the statistics of the
number of nodes, edges and the size of their Turtle files.
For the sake of speed, when studying properties of these
knowledge graphs, we use files in their HDT format.

16http://rdfpro.fbk.eu/

3. Analysis of the Integrated
knowledge graph

In this section, we first study how the information of
entities can be enriched with some statistical analysis of
graph structure (Section 3.1). We then examine identity
links (e.g. skos:exactMatch) in the integrated graph
G and their corresponding subgraphs (Section 3.2). Fi-
nally, we study transitive and pseudo-transitive relations
such as concept generalisation (Section 3.3) followed by
a discussion (Section 3.5).

3.1. Statistical analysis
We study how the information of entities can be en-
riched when combining different resources. When an
entity is described in different domains, its in- and out-
degree are expected to increase. Figure 1 illustrates the
in-/out-degree of the knowledge graphs and the inte-
grated knowledge graph. Both the in- and out-degrees
of the integrated graph show a power-law distribution.
Moreover, the figures show that the integration increases
both the number of degrees in general and the number of
nodes with high degrees, which demonstrates how this
integration can enrich the information of entities. For
example, lkif-core-norm:allowed_by has an out-
degree of 7 in the integrated graph but the three graphs
that contain information about it has out-degrees of 2, 5,
and 1 respectively17.

A strongly connected component (SCC) of a directed
graph is a maximal subgraph where there is a path be-
tween all pairs of vertices. A weakly connected compo-
nent (WCC) is a subgraph of the original graph where
all vertices are connected to each other by some path,
ignoring the direction of edges. Table 3 summarizes the
graph-theoretical statistics. Let maxSCC and maxWCC
represent the number of nodes in the largest strongly
connected component and weakly connected component
respectively. In addition, we compute the fraction of
nodes in the biggest SCC and WCC, denoted 𝑝𝑆 and 𝑝𝑊
respectively. The high values of 𝑝𝑊 in the table show
that the graphs are mostly connected. More specifically,
𝑝𝑊 = 99.98% for the integrated graph, which is due to
the overlapping domains of the knowledge graphs and
the mappings. The low values of 𝑝𝑆 indicate that the un-
derlying structure of these graphs is mostly hierarchical,
especially that of JEL, BRO, and FIBO-vD.

3.2. Analysis of identity links
Identity links are relations between entities that are
considered identical and intended to refer to the same

17The prefix lkif-core-norm corresponds to the namespace http:
//www.estrellaproject.org/lkif-core/norm.owl#.
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Table 3
Graph-theoretical statistics of knowledge graphs

Name maxSCC 𝑝𝑆(%) maxWCC 𝑝𝑊 (%)

FIBO-
vD

1 0.01 17,535 99.93

FIBO-
OWL

297 0.29 103,208 100

FRO 17 0.02 94,015 99.79
HFR 849 5.96 14,230 99.96
LKIF 88 8.76 963 95.82
BRO 13 0.01 258,982 99.96
FIGI 13 0.11 12,180 100
STW 6777 13.25 51,128 100
JEL 1 0.01 12,099 99.92
Fund 109 1.08 10,111 99.92
STW-
mappings

617 0.79 78,398 100

alignment 3 0.13 119 5.11
integrated 36,853 6.03 610,792 99.98

Figure 1: Distribution of in-/out-degree of nodes in knowledge
graphs

real-world entities. Typical identity links use relations
such as owl:sameAs and skos:exactMatch. We first
study identity links in G and their corresponding sub-
graphs. In contrast to the statistics reported by Raad
et al., where owl:sameAs is much more popular than
skos:exactMatch [10], our analysis shows that only
5,253 triples about owl:sameAs are in G against 31,254

triples about skos:exactMatch. In addition, there
are 8,172 triples about skos:relatedMatch, and 6,418
triples about skos:closeMatch. Figure 2 shows the fre-
quency distribution of the weakly connected components
in their corresponding subgraphs.

Figure 2: Frequency distribution of connected components
in the integrated graph

The largest two connected components of the
subgraph of owl:sameAs are with 8 and 6 entities
each. In contrast, the largest two connected components
of skos:exactMatch are much bigger, with 119 and
45 entities respectively. For skos:relatedMatch,
the largest weakly connected component consists of
21 entities. That of skos:closeMatch consists of
52 entities. A manual examination below shows that
there are errors in these large connected components.
The mis-use of these SKOS mapping properties can
have less implications than the owl:sameAs since
skos:exactMatch indicates only “a high degree of
confidence that the concepts can be used interchangeably
across a wide range of applications”[10]. Moreover,
lkif-core:mereology.owl#strictly_equivalent
is a equivalence relation but corresponds to no triple18.
More discussion is included in Section 3.4.

3.3. Analysis of transitive and
pseudo-transitive relations

Transitive relations are widely used in knowledge graphs
on the definition of class subsumption, concept generali-
sation, organisation composition, etc. Due to transitivity,
entities in cycles imply some equivalence relation, which
could be erroneous. Take lkif-core:component_of
for example. A triple specifies that “some thing is a (func-
tional) component of some other thing”. Entities in a
cycle of lkif-core:component_of indicate that all
they are components of each other, which could be erro-
neous. Some past work showed how strongly connected
components can be used to locate errors when refining
knowledge graphs [11, 12].

18The prefix lkif-core corresponds to the namespace http:
//www.estrellaproject.org/lkif-core/.
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There are in total 20 relations typed
owl:TransitiveProperty in G. We also study
the pseudo-transitive relations: those relations that
are not typed owl:TransitiveProperty but shows
transitivity in their intended semantics [11]. In this study,
we focus on two pairs of such relations: skos:broader
and its inverse skos:narrower, skos:broaderMatch
as well as its inverse relation skos:narrowerMatch.
This section excludes relations of identity links such as
skos:exactMatch, which was discussed in Section 3.2.

Take skos:broadMatch for example. A manual anal-
ysis of the largest three SCC shows the edges could be
erroneous. These SCCs are: a component with four enti-
ties about plebiscite, referendum, and popular initiative;
a component with three entities about insurance and pri-
vate insurance; a component with three distinct entities
about the CARICOM countries, Caribbean countries, and
the Caribbean Community.

Let GB be the subgraph of the integrated graph G with
B = {skos:broader, skos:broaderMatch} andGN for
N = {skos:narrower, skos:narrowerMatch}. Next,
we combine the GB with the graph G’N, where G’N is a
graph with each edge of G reversed in direction. After
performing the same analysis, we discover a new strongly
connected component with four entities about adjustable
peg, fixed exchange rate, exchange rate regime and in-
ternationales Währungssystem, respectively. Moreover,
the resulting graph has 44 connected components of two
entities, which are more than that of the subgraphs cor-
responding to each individual relation. This indicates
that such integration can result in more complex errors
which do not exhibit in stand-alone graphs.

Our analysis shows that rdfs:subClassOf is a pop-
ular relation with 47,597 triples. However, there is no
SCC with more than one component, which implies that
the underlying class hierarchy is a directed acyclic graph.
In addition, lkif-core:component, fro:divides19,
and its inverse fro:divided_by are also popular tran-
sitive relations. Finally, none of them has strongly con-
nected components of size greater or equal to two.

3.4. Source of Error and Refinement
When tracing back to the sources of each edge, we found
that skos:broader and skos:narrower are mostly
from three sources: STW, JEL, and FIBO-vD. When
combined with the subgraph of skos:broadMatch and
skos:narrowMatch, there are in total 44 SCCs of two
entities, two SCCs of three entities, and two SCCs of four
entities. It is feasible that some domain experts manually
examine all these small SCCs without employing any
refinement algorithm.

19The prefix fro corresponds to the namespace http://finregont.
com/fro/ref/LegalReference.ttl#.

Our analysis also shows that the identity links come
solely from two sources: the owl:sameAs triples are
from the FIBO-OWL knowledge graph, the triples
about skos:exactMatch, skos:closeMatch, and
skos:relatedMatch are from STW-mappings and our
alignment. Mapping files about the STW subject cate-
gories were created by the alignment tool Amalgame20.
Our manual examination shows that these identity links
are closely related concepts and requires knowledge from
experts for refinement.

3.5. Discussion
As shown above, this integration results in new statisti-
cal and graph-theoretical properties. Next, we compare
how these problems exhibit in our graph and the LOD-
a-lot21 [13]. LOD-a-lot is a dataset that integrates over
28 billion triples from 650K files of the LOD Cloud into
a single ready-to-consume file. While our integrated
knowledge graph has 1.7 million unique triples, LOD-a-
lot is much larger with 28.3 billion triples. For LOD-a-lot,
356.9K edges out of 11.8 million edges of skos:broader
are involved in SCCs [11]. In contrast, we have no
SCC with two or more entities among 17,868 edges of
skos:broader. For LOD-a-lot, 1.4K edges out of 4.4 mil-
lion edges of rdfs:subClassOf are involved in SCCs
[11, 12]. In contrast, there is no cycle for our correspond-
ing subgraph. This confirms the quality of the knowledge
graphs we used. The identity graph of the LOD-a-lot
graph regarding owl:sameAs consists of 558.9 million
triples with the largest connected component consisting
of 177.8K entities [10]. In contrast, our identity graphs
of both owl:sameAs and skos:exactMatch are small
and can be manually refined.

4. Conclusion
In this paper, we presented an integrated knowledge
graph in the domain of Economics, Finance, and Banking.
We demonstrated how the integrated graph has more en-
tities with richer information. We discussed subgraphs of
(pseudo-)transitive and identity relations as well as their
refinement. The overall usefulness has been improved
despite minor errors introduced due to integration.

Our integrated knowledge graph can be used to evalu-
ate data interoperability. Also, it can enrich the features
of entities, which may increase the accuracy of pattern
recognition using Machine Learning for the detection of
takeovers, money laundering, insurance fraud, counter-
feiting, etc. Furthermore, it can also be used to improve
the quality of suspicious activity reports, recommenda-
tion systems, conversational agents, etc.

20https://github.com/jrvosse/amalgame
21http://lod-a-lot.lod.labs.vu.nl/
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