
Refining Large Integrated Identity Graphs using
the Unique Name Assumption

Abstract. The Unique Name Assumption (UNA) supposes that two
terms with distinct IRIs from the same dataset do not refer to the same
real-world entity. The UNA has been used to refine identity graphs: if the
UNA is true, then identity links (e.g. those with relation owl:sameas)
between two entities defined by the same dataset can be considered er-
roneous. While this works on a small scale, it has not been validated on
the scale of large integrated knowledge graphs, such as the LOD cloud,
which contain data from many different sources. We propose a concrete
definition of the UNA with tolerance towards exceptions, namely the in-
ternal UNA (iUNA). We compare our definition with existing definitions
with respect to some real-world datasets. Based on the iUNA, we pro-
pose an algorithm to identify erroneous links in an identity graph of half
a billion triples extracted from the LOD Cloud. The algorithm employs
an SMT solver and takes advantage of the latter’s ability to efficiently
reason over equality and remove a minor amount of links. Finally, we
demonstrate how additional information can improve the accuracy.

1 Introduction

The question “what is an entity” and the related question “when are two enti-
ties equal” are not only longstanding philosophical questions1 but are also long-
standing technical issues in information systems [6]. The Semantic Web, and in
its wake, Linked Open Data, has operationalised the notion of an “entity” as
an IRI: each is represented as an IRI, and using the same IRI implies referring
to the same entity. Although this improves over the ambiguous use of names in
everyday language, it still leaves open the other direction of the identity ques-
tion: can different IRIs represent the same real world entity? The Unique Name
Assumption (UNA) supposes that two terms with distinct IRIs do not refer to
the same real-world entity. While this works on a small scale, the UNA is an
unrealistic assumption on the scale of large integrated knowledge graphs, such
as the LOD cloud, which contain data from many different sources.

As a relaxation of the UNA, the owl:sameAs predicate allows connected en-
tities with different IRIs that still refer to the same real-world entity [13, 15].
Figure 1a is a fictional example with six entities from three namespace prefixes
(ex, ex-fr, and ex-nl) where there are four knowledge bases (four colors). The
three entities to the right indicate that the same concept may be defined in
different languages. Due to transitivity, the mistake between ex:Holland and

1 https://plato.stanford.edu/entries/object/
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ex:Holland, Texas

ex:Holland

ex:DutchProvince

ex:Netherlands

ex-fr:Pays-Bas

ex-nl:Nederland

(a) A fictional example of erroneous
owl:sameAs links between four different
entities named Holland: the country, the
former province, and the city in Texas.

ex:Bandon, Oregon

ex:Bandon (Oregón)

ex:Bandon%2C Oregon

ex-es:Bandon (Oreg%C3%B3n)

ex:Bandon (Oreg%C3%B3n)

(b) An example of redirect links (red)
and equivalence under different encodings
(blue).

Fig. 1: Examples of subtleties in refining integrated identity graphs.

ex:Netherlands was carried further to the two entities to the left. This exam-
ple shows how erroneous links can accumulate. Previous research estimates the
percentage of erroneous identity links to be in the range of 3% [10] to 4% [13],
while earlier work estimates this number to be as high as 20% [9].

In this paper, we present a more realistic definition of the UNA for integrated
graphs, and we investigate the refinement of identity graphs by detecting and
removing erroneous links based on different definitions of UNA.

1.1 Related Work

Existing approaches for detecting errors in identity graphs fall into three cate-
gories[15]. Content-based approaches exploit the descriptions associated to each
resource for evaluating the correctness of an identity link. They typically require
textual descriptions for each entity. In practice, such algorithms often do not
scale to the size of the LOD Cloud and rely on additional information such as
vocabulary alignments, which is not always available [15, 7]. The network-based
approaches [8, 14] take advantage of graph-theoretical algorithms for the detec-
tion of erroneous links (e.g. using the Louvain algorithm [5]). However, these
methods are not as accurate as the others. Finally, the inconsistency-based ap-
proaches [10, 12] hypothesise that owl:sameAs links that lead to logical inconsis-
tencies have higher chances of being incorrect. However, such methods typically
require the presence of a large number of ontology axioms and alignment of the
vocabularies.

The use of the UNA to detect errors in identity graphs is an inconsistency-
based approach, but without the need for expert knowledge or axioms. This idea
has been explored in [11, 16]. However, the lack of an agreed-upon definition of
UNA leads to different conclusions. The CEDAL algorithm [16] uses map-reduce:
by collecting nodes into groups that do not violate the UNA and merging groups
without violations, the algorithm returns a solution without UNA violation.
However, our examination in Section 3.2 shows that it is not always the case that
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there is exactly one entity from each source. [11] uses linear program relaxation,
but the algorithm does not consider the transitivity of equivalence.

1.2 Contributions & structure of this paper

This paper focuses on five research questions: RQ1: how can we define UNA
for large integrated knowledge graphs? RQ2: how do we validate the definitions
proposed?RQ3: can UNA give a reliable indication of identity errors in practise?
RQ4: can we define an efficient algorithm for the refinement of the identity
graphs? RQ5: is it possible to improve the results using additional information
from the graph?

We present existing definitions of UNA and propose ours in Section 2. Section
3 tests the UNA definitions by validating them over data of the LOD cloud and
further examines their reliability for error detection in Section 3.2 and Section
3.3 respectively. We present our refinement algorithm in Section 4 and its im-
plementation details in Section 5.1. Finally, the evaluation metrics and results
are included in Section 5, followed by discussion and future work in Section 6.

Our main contributions2 are as follows:

1. We propose a new definition of the UNA, namely the iUNA and check it
against a large integrated knowledge graph together with other definitions.

2. We design an inconsistency-based refinement algorithm using the iUNA by
employing an SMT (Satisfiability Modulo Theories) solver.

3. We publish a gold standard of over 8K manually annotated entities (200K
owl:sameAs links), with some additional information about weights of edges,
estimated sources of entities, and redirect relations between entities.

4. We introduce new evaluation metrics and provide a benchmark using our
gold standard and study how to improve the performance of our algorithm.

2 Preliminaries

2.1 Integrated Knowledge Graphs

A knowledge graph is a directed and labelled graph G = ⟨V,E,ΣE , lE⟩, where
V is the set of nodes, E ⊆ V × V the set of edges, and ΣE is the set of edge
labels. A function lE : E → 2ΣE assigns to each edge a set of labels from
ΣE . Given a specific relation R ∈ ΣE , we denote its subgraph GR = ⟨VR, ER⟩.
When R is an equivalence relation I, the subgraph is referred to as the identity
graph. In this paper, we study only the case of owl:sameAs. Due to symmetry,
we will use GI as an undirected graph, and we will ignore reflexive edges. An
integrated knowledge graph G = ⟨V,E, ΣE, lE⟩ is a combination of a set of N
knowledge graphs {G1, . . . , GN}, with G representing the union of these graphs.
An integrated identity graph GI is a combination of graphs where ΣE = {I}.
2 The code, the datasets, and their description are at https://figshare.com/s/

71b50777d44164209765.
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For an undirected graph G, a Connected Component (CC) is a maximal
subgraph with any two vertices connected by a path, and G may consist of
multiple CCs, denoted Gcc. A gold standard is a map g of IRIs U to their real-
world entities or ‘unknown’. An identity link between ei and ej is erroneous if
g(ei) ̸= g(ej) and neither is ‘unknown’. An equivalent class (EC) is a set of
vertices corresponding to the same real-world entity. E.g. Figure 1a has an EC
containing the three entities on the right, in addition to three singleton ECs.
All identity links involving ex:Holland are erroneous. A CC may consist of
multiple densely inter-connected clusters. These clusters are often interlinked by
some erroneous edges. Figure 2a shows an example.

2.2 The Unique Name Assumption

The classical UNA postulates that any two ground terms with distinct names are
non-identical [11]. In the scope of integrated knowledge graphs, [16] formalises
this as any two URIs in the same knowledge base cannot refer to the same
thing in the real world. We name this definition naive UNA, or nUNA for short.
More formally, we can define η(ei) as the sources of an entity ei. For example, a
source of an entity could be the file where the entity is first introduced, typically
with some additional information such as label, comments, abstract, title. An
integrated knowledge graph violates the naive UNA if there exists two entities ei
and ej referring to the same real-world entity s.t. η(ei)∩η(ej) ̸= ∅. De Melo [11]
extends this definition by proposing the use of a quasi unique name constraint
for entities, by taking the redirect relations and dead nodes (those that can no
longer be resolved) into account. For example, two DBpedia entities from the
same dataset/source do not violate the UNA if one redirects to the other, or one
is a dead node. We refer to it as the quasi UNA, or qUNA. In practice, they take
this redirect awareness between entities in major hubs as exemptions3. These
definitions have several drawbacks when applied at Web scale. First, both nUNA
and qUNA lack a clear definition of provenance. While Valdestilhas et al. rely on
LinkLion4 for computing the provenance of entities, [11] remains unclear, and
does not specify how redirection and dead nodes were obtained . Furthermore,
due to the lack of gold standard, both definitions were not validated with respect
to real-world data before being used for refinement.

When examining the data in the LOD Cloud, we noticed that the use of
identity links varies between linking entities from different languages, versions,
or encoding. Moreover, most data publishers follow their own policies to avoid
duplicates within their datasets. Therefore, we propose our own definition of
the UNA, which we call the internal UNA (iUNA), to take these differences
into account. Our iUNA definition assumes that two different IRIs within the
same namespace should refer to distinct real-world entities only when they are
defined in the same source. Our definition also takes into account the following
exceptions as non-violations of the iUNA between two entities e1 and e2:

3 [11] is restricted to only six major hubs: DBLP, English DBpedia, FreeBase, GeoN-
ames, MusicBrainz, and UniProt.

4 LinkLion (https://www.linklion.org/) is no longer available for comparison.
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(a) An example CC with 633 nodes and
6011 edges.

(b) Its gold standard with erroneous edges
removed (yellow for unknown)

(c) The CC and its (directed) edges of
redirection in red. New nodes are IRIs
that do not exist in CC.

(d) The CC and its (undirected) edges be-
tween nodes differ only by encoding (in
purple)

(e) The Louvain Method (f) Our algorithm (using iUNA-label)

Fig. 2: An example of a connected component (No. 240577), its gold standard,
necessary information and a comparison of two solutions.

1. if e1 redirects to e2, or vice versa,
2. if e1 corresponds to the percent-encoding [3] of e2 or vice versa5,
3. if e1 or e2 are dead nodes, not found, unresolvable or redirects until reaching

some error or not found, or has timeout error while resolving.

All the definitions above depend on the provenance of the entities. This is
not usually available at Web scale, so we use the following methods to estimate
the provenance for an entity e.

Explicit sources: an explicit source of e is the object in any triple with subject
e and predicate rdfs:isDefinedBy (or any equivalent or sub-properties).

5 For example, ex:Bandon (Oreg%C3%B3n) and ex:Bandon (Oregón) can be equivalent.
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Implicit label-like sources: an implicit label-like source of e is the RDF file
containing triples where e is the subject and rdfs:label (or any of its
equivalent or sub-properties) is the predicate.

Implicit comment-like sources : an implicit comment-like source of e is the
RDF file containing triples where e is the subject and rdfs:comment (or any
of its equivalent or sub-properties) is the predicate.

An examination of our gold standard (see below) indicates that only 0.71%
of the entities has an explicit source. In contrast, 61.97% of the entities has at
least one implicit label-like source and 40.71% has a comment-like source. This
indicates that explicit sources are too rare and thus we only use two variants of
iUNA in this work: iUNA-label and iUNA-comment corresponding to label-like
sources and comment-like sources respectively.

For example, in Figure 1a, there can be label-like or comment-like informa-
tion from different datasets. Indicated by the color, we can reckon that the
nodes in white (ex:Netherlands, ex-nl:Nederland, and ex:Holland) have
label-like information in source s1. While ex-fr:Pays-Bas, ex:DutchProvince,
and ex:Holland, Taxas have label-like information in source s2, s3, and s4
respectively. Therefore, only the entities in source s1 are then tested for the
violation of iUNA. The iUNA allows multiple IRIs with different namespaces
to refer to the same real-world entity. For example, http://af.dbpedia.org/

resource/Agra and http://ca.dbpedia.org/resource/Agra are both entities pub-
lished by dbpedia.org but are of different languages. The IRIs http://wikidata.
dbpedia.org/resource/Q6453410, http://www.wikidata.org/entity/Q6453410 and
http://wikidata.org/entity/Q6453410 are about the same real-world entity but
in different versions of wikidata. In addition, we allow IRIs that differ only in
their string encoding, or IRIs which ultimately redirect to the same location.

3 Testing the UNA

3.1 Dataset & Gold standard

We use the http://sameas.cc dataset [2], which provides the transitive closure
of 558 million distinct owl:sameAs statements. These identity statements were
extracted from the 2015 LOD Laundromat crawl [1] that serves, in a uniform
and standards-compliant format, more than 38 billion triples from over 650K
RDF files. The identity links are distibuted over 49 million CCs, with each CC
being associated with a unique ID. We manually annotated all IRIs from 28 CCs
with fewer than 1K nodes each. Our gold standard consists of 8,394 manually
annotated entities covering a total of 232,311 owl:sameAs links. There are 987
entities (11.75%) annotated as ‘unknown’. A total of 209,160 edges (90.02%) are
between nodes with the same annotation while 3,678 edges (1.58%) link entities
with different manual annotations. The remaining edges involve at least one node
which is annotated as ‘unknown’. This leads to an estimate of the error rate to
be between 1.58% and 9.98%. We divide our gold standard randomly into two
parts of 14 files each for training and evaluation respectively.
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To better understand the equivalent classes in the gold standard, we show
their size distribution in Figure 3a. This distribution shows that redundancy is
common in the LOD cloud. It indicates that the majority of equivalent classes
in these CCs contain fewer than 200 nodes, while there could be as many as 358
entities referring to the same real-world entity at the far end of the spectrum.
Thirty equivalent classes consist of only one entity. This gives a reference for the
setting of parameters in Section 4.

3.2 Validating the UNA

Next, we validate our definitions (RQ2). We analyse how the sources correspond
to the number of entities in each equivalent class in the gold standard. Figure
3b presents the number of entities in each implicit label-like source across the
equivalent classes. The left-most bars indicate the number of label-like sources
that corresponds to only one entity in an equivalent class. An estimate of 21,197
out of 22,671 sources follows the nUNA, amounting to 93.50%. Similarly, 94.43%
sources follow the qUNA, and 94.11% sources follow the iUNA. As in Figure 3c,
using comment-like information, we estimate that 14,878 out of 15,266 sources
has comment-like information for only one entity each, which amounts to 97.46%.
Similarly, 96.77% sources follow the qUNA and 97.09% sources follow the iUNA.

In both qUNA and iUNA, the number of entities in the sources of each
equivalent classes reduces due to the removal of dead nodes and awareness of
redirects. iUNA has a more general awareness of redirects while qUNA limits
its redirect awareness to only six namespaces as explained in Section 2.2. In
addition, iUNA takes variance in encoding into consideration.

This shows that despite the redundancy in the LOD cloud, the UNA holds in
general. The blue bars on the right of Figures 3b and 3c indicate that there may
be exceptions, for instance for datasets that integrate multiple other datasets.

3.3 Reliability of the UNA

In this section, we focus on RQ3: Can the UNA give a reliable indication of
identity errors in practice? As a baseline, we sample for each connected compo-
nent G, |V | different pairs at random. An estimate of the error (proportion of
non-identical pairs) is between 0.47 and 0.68, depending on the interpretation
of the unknown nodes.

Next, we sample the same amount of pairs and test the error rate of the pairs
that violate each of the three UNA definitions. The statistics in this section are
the average of three runs. 61.79% of the sampled pairs violates the nUNA, the
estimated error is between 33.31% and 49.89%. In contrast, an average of 49346.3
(41.23%) pairs violates the qUNA with an estimated error rate between 33.28%
and 51.87%. Finally, on average, only 934.3 (0.78%) pairs on average violates
iUNA, with the lowest error rate between 6.10% and 36.69%. In summary, the
most amount of pairs violates nUNA. qUNA captures the least amount of pairs
and has high error rate in comparison with iUNA.
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(a) A histogram of the size of ECs in the gold standard.

(b) Frequency of entity counts in label-like sources

(c) Frequency of entity counts in comment-like sources

Fig. 3: Distribution of entities in equivalent classes

When using comment-like sources, the estimated error for the nUNA is be-
tween 33.07% and 46.77%. That of the qUNA has an error rate between 32.80%
and 49.08%. Finally, on average 356 (0.30%) pairs violate the iUNA with an
error rate between 8.89% and 21.18%. This shows that the pairs violating the
iUNA have the lowest error for both label-like and comment-like sources. Finally,
we observe that, for the iUNA, when using label-like sources, 2.62 times more
pairs can be captured than that of comment-like sources.

The reliability of the iUNA also depends on the three exemptions. Figure 3b
and 3c already took dead nodes into account. Next, we estimate the impact of
the first two exemptions. Figure 1b presents a fictional example with redirect
edges in red. The equivalence relation due to different encodings are captured by
blue edges. There are in total 13,922 nodes in the graphs that capture redirect
relations 6 Our experiment shows that 3,072 out of 8,394 entities were redirected.

6 Redirection were tested with the requests Python package using the get function
with a max timeout of 5 seconds for connection and 25 seconds for reading.
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Among them, 5,528 correspond to new IRIs that are in the extended graph
but not in the original graphs. There are in total 6,991 edges in the redirect
graphs. Among them, 546 are between entities in the original graph with 504
correct ones and 8 erroneous ones. That is, the error rate is between 1.47% and
7.69%. In addition, we have 12,531 pairs of entities that redirect to the same
entity in the extended graph. The error rate is between 4.29% and 6.32%. An
example is in figure 1b where the entity ex-es:ex:Bandon (Oreg%C3%B3n) and
ex:Bandon (Oregón) both redirects to ex:Bandon, (Oregon).

Next we study the equivalent entities suffering from different encodings. Fig-
ure 1b illustrates two examples: Bandom%2C Oregeon and ex:Bandon, Oregon;
ex:Bandon (Oreg%C3%B3n) and ex:Bandon (Oregón). We have 1,818 pairs of
entities in the gold standard7. Among them, there are edges between 1,130 pairs
in the original identity graphs with an error rate between 2.21% and 8.50%. We
discovered 688 new pairs that differs only by encoding with an error rate between
1.16% and 14.83%. Finally, there is a pair of entities whose IRIs in alternative
encoding are the same but they actually refer to different real-world entities. We
conclude that though the exemptions do not always hold, they are often useful.

4 Algorithm Design

The algorithm follows the intuition that for two inter-connected clusters, if there
is more force pushing them apart than holding them together, then some edge(s)
should be removed to split the clusters apart. The “force” that pushes the clusters
apart are pairs of entities violating the UNA. The “force” that holds the clusters
together are the existing edges between the clusters, edges of redirection and
the edges in the graph of equivalence under different encodings. The algorithm
balances the two forces to identify a minimal amount of erroneous edges so that
the two clusters can be told apart.

Computing an optimal cut whose removal makes the graph consistent within
each CC is APX-hard [11]. We can, however, find sub-optimal solutions in poly-
nomial time by using SMT methods [4]. We choose this approach for two reasons:
to perform fast reasoning over relations of equality and inequality; and to obtain
a sub-optimal solution for weighted constraint solving in polynomial time.

4.1 Algorithm using UNAs

Algorithm 1 takes the identity graph G, the corresponding redirect graph GR,
the graph of equivalence under various encodings GE , and a weighting scheme w.
As a first step, it calls Algorithm 2 to test if the problem is beyond the capability
of solving. If solved, the algorithm removes the edges identified (line 7), resulting
in G′. Next, we obtain the graphs for each connected component of Gccs. We
obtain the corresponding subgraphs GR

cc, G
E
cc from GR, GE respectively. Gccs,

together with GR
cc, G

E
cc and the weighting scheme is then taken as input for

7 We used the parse function in the rfc3987 and urllib Python library.
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Algorithm 1: partition

1 Input: an identity graph G, a graph of redirect GR, a graph of equivalence

under various encodings GE , a weighting scheme w
Result: status s, a set of edges removed A, the graph of partitions GP

2 initiate A as an empty set;

3 let status s, removed edges A = partition iter(G, GR, GE , w);
4 if s is error then
5 return (‘error’, ∅, G)

6 while |A| is not increasing (no new edge to remove) do
7 let H be the new graph of G with A removed;
8 obtain Hccs, the graphs for each connected component of G′ ;
9 foreach Hcc ∈ Hccs do

10 obtain the corresponding subgraphs HR
cc, H

E
cc from GR, GE

respectively;

11 (s′, A′) = partition iter(Hcc, H
R, HE , w);

12 if s′ is not ‘error’ then
13 A := A ∪A′

14 else
15 return (‘error’, A)

16 remove A from G to get GP ;
17 return (‘success’, A, GP ).

Algorithm 2 (line 11). If successfully solved, the edges are collected in A. The
algorithm stops when it encounters an error or has no more edges to remove.

In the while-loop of Algorithm 1 (line 11), there is a repeated call to Algo-
rithm 2 that examines each graph of a connected component. More specifically,
it takes advantage of an SMT solver for the reasoning over weighted relations
of equivalence and returns a sub-optimal solution within a given time bound.
Here, we use the minimum spanning forest F instead of the graph Gcc to re-
duce the load on the SMT solver. For an edge, or a pair of entities (s, t), we
introduce integer variable Is and It respectively. A soft clause cs,t is (Is = Tt)
combined with a weight (line 14 and 17) with reference to the weighting scheme
w. The hard clauses are (0 ≤ Is) and (Is ≤ M) where M is the upper bound of
the integer values. While not all soft clauses are true in the model, all the hard
clauses must be satisfied. The goal is to maximise the sum of weights over all soft
clauses while satisfying all the hard clauses. The SMT solver returns ‘unknown’
when it runs out of time. Otherwise, it returns a model where each each entity
is assigned an integer. The edge (s, t) remains if and only if Is equals It in the
model m.

In Algorithm 2, the use of a minimum spanning forest reduces the number of
edges but removes some graph properties. To keep some original graph structure
in F and to guide the back-propagation in SMT solving, we sample 15% of the
edges B and add them to F . This is based on our observation that over 90%
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Algorithm 2: partition iter

1 Input: a graph of connected component Gcc, a graph of redirect GR
cc, a graph

of equivalence under various encodings GE
cc, a weighting scheme w

Result: s, a set of edges removed Acc

2 obtain a set of pairs P violating the UNA;
3 if |P | ≤ 1 then
4 return (’success’, ∅)
5 initiate an SMT solver o;
6 # hard clauses ;
7 foreach entity s in Gcc do
8 we introduce an integer variable Is and assert hard clauses (0 ≤ Is) and

(Is ≤ M)

9 # soft clauses ;
10 let F be the minimum spanning forest of Gcc;
11 randomly sample a small portion of B edges in Gcc and add to F ;

12 obtain G′R
cc the undirected graph of the (directed) graph GR

cc;
13 foreach pair f = (s, t) in F ∪ P do
14 initiate a soft clause cf according to w

15 foreach pair r = (s, t) in G′R
cc ∪GE

cc do
16 if s and t are reachable then
17 initiate/update the weight of a soft clause cr according to w

18 add all soft and hard clauses to o;
19 let s be the result of o after solving and m be the model (if any);
20 if status s is ‘unknown’ then
21 return (‘error’, ∅)
22 else
23 check each edge f of F , against the model m;
24 let Acc be the set of all removed edges of F ;
25 return (‘success’, Acc).

of the edges are transitive closures between DBpedia’s multilingual entities (see
Section 6) for more details. We sample at most |Vcc| pairs and filter out those
do not violate UNA to form P to get soft clauses (line 9). If P ≤ 1, no edge will
be removed and the algorithm returns an empty set.

The weighting scheme w consists of a series of functions that map clauses to
weights: w = (fG, fR, fE , fP ). For a soft clause ce corresponding to an edge e,
the weight is fG(ce) + fR(ce) + fE(ce) + fP (ce). The first weighting scheme w1

consists of four functions: fG assigns the clause of each edge in the F a weight
of 5, the rest 0; fR, fE increases the weight by 1 respectively while fP reduce
the weight by 1. We used the training dataset to fine-tune the second weighting
scheme w2, we let fG assign the clause of each edge in F a weight of 31, the rest
0. That of fR and fE are both 5 while fP reduces the weight by 16.
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5 Evaluation

5.1 Implementation

We used the networkx Python package8 for the computation of the connected
components, the Louvain algorithm [5], and the minimum spanning forests. For
the manual annotation of the entities, we used ANNit9. We use Z310 as SMT
solver [4]. We published all the code as an open source project11. All experiments
were conducted on a 2.2 GHz Quad-Core i7 laptop with a 16GB memory running
Mac OS. All reflexive edges were eliminated in preprocessing.

Based on our experience with Z3, the timeout for SMT solving was set to
|Gcc|/100 + 0.2 second for each Gcc. In this setting, there is no timeout and the
solver does not return ‘unknown’ for even the biggest graph in our experiment.
The scalability is discussed in Section 6.

5.2 Evaluation Metrics

While precision and recall are commonly used in evaluation metrics [15], the
presence of ‘unknown’ annotations makes them less suitable for this task since
no edge involving entity of ‘unknown’ counts toward precision or recall. Take
the results in figure 2e and 2f as example. The precision and recall are both
0 for our algorithm because all the edges removed involve some entities anno-
tated “unknown”. In contrast, the Louvain algorithm achieves a better precision
and recall despite removing significantly more edges. This shows that precision
and recall do not adequately capture the qualities we look for in a refinement
algorithm.

We provide an additional metric, that we hope captures the desired qualities
better. In its design, we focus on two properties that the equivalent classes
should possess within the connected components resulting from refinement: (a)
the equivalent class should not be separated over multiple components; (b) the
equivalent class should not share the connected component it is in with other
equivalent classes.

This leads to the following metric for the graph G′ that results from applying
a refinement algorithm to G:

Ω(G′) =
∑

C∈G′
ccs

∑
Qe∈E(C)

|Qe|
|V |

|Qe|
|Oe|

|Qe|
|C|

.

Here, C iterates over all connected components in G′ and E(C) is a parti-
tioning of the nodes in C by equivalent class, so that Q always represents the set
of nodes within a given C that refer to the same entity e. V represents the total

8 https://networkx.github.io
9 ANNit is a user-friendly interface for fast annotation of entities and triples. See [url
and doi withheld for anonymity] for details.

10 https://github.com/Z3Prover/z3
11 The code and implementation details are at [url and doi withheld for anonymity].
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number of vertices in the graph, and Oe is the set of all entities in G′ referring
to e.

Within the summation, there are three factors. The first, |Qe|/|V | is the
proportion of the current set of vertices to the total. This turns Ω(G′) into
a weighted sum over all subsets |Q|, with the weights summing to the total
proportion of nodes not annotated “unknown”. The second, |Qe|/|Oe|, is 1 if all
references to e are in C, and lower if there are more references in other connected
components. This penalizes deviating from (a). The third, |Qe|/|C|, is 1 if all
nodes in C refer to e and lower if the connected component is shared with nodes
referring to other entities. This penalizes deviating from (b). Note that if the
graph contains no “unknown” nodes, the max. of Ω is 1.

5.3 Evaluation Results

We compare our algorithm using two variants of sources (implicit label-like and
comment-like sources) with two weighting schemes (w1 and w2, as defined in
Section 4) against the Louvain algorithm. Table 1 presents the results of the
average of three runs for each method. The Louvain algorithm removes a signif-
icant amount of edges in comparison with our algorithm. It has a higher recall
but a lower precision. As for time efficiency, the Louvain Method completes pro-
cessing both the training and evaluation sets within two minutes, while it takes
around 23 minutes for our algorithms to finish. There are six CCs in the training
set and and five in the evaluation set where where no edge is erroneous (except
edges linking entities annotated as ‘unknown’ that can possibly be erroneous).
While Louvain removes edges from all CCs, our algorithm removes no edges from
4.93 and 3.93 graphs respectively on average. In addition, we noticed that up
to two CCs in the evaluation set can suffer from timeout using our algorithm.
The precision drops significantly in the evaluation set. Our manual examination
shows that some “harder” cases were distributed to the evaluation set including
the example in figure 2a. It takes around 5 minutes to process the training set
in contrast to around 17 minutes for the evaluation set.

Using qUNA removes fewer edges while using iUNA gives higher Ω but not
significantly better. In more cases, using label-like sources gives better Ω than
comment-like sources. We therefore take the settings of the best performance on
Ω and |A| for the next section.

5.4 Improving the Results

RQ4: Can we use additional information (weights over edges of the input graph)
to improve the performance?

We can define the weight of an edge as the number of datasets in which the
corresponding triple can be found (not to be confused with the weight of a soft
clause in the algorithm). Out of the 650K available LOD Laundromat files, the
owl:sameAs links are distributed over 7,024 files. Thus, the weight of an edge
can vary between 1 and 7,024. Figure 4 compares the weight distribution in the
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training set evaluation set
precision recall Ω |A| precision recall Ω |A|

Louvain algorithm 0.020 0.759 0.084 39,302 0.039 0.660 0.083 43,642

qUNA-label-w1 0.300 0.061 0.587 14 0.417 0.006 0.607 57

qUNA-label-w2 0.237 0.083 0.618 88 0.167 0.004 0.576 53

qUNA-comment-w1 0.324 0.031 0.595 14 0.244 0.004 0.562 24

qUNA-comment-w2 0.236 0.104 0.614 91 0.199 0.021 0.591 79

iUNA-label-w1 0.186 0.077 0.605 101 0.086 0.026 0.585 35

iUNA-label-w2 0.168 0.108 0.619 262 0.065 0.016 0.617 175

iUNA-comment-w1 0.187 0.053 0.609 91 0.146 0.009 0.575 42

iUNA-comment-w2 0.084 0.003 0.618 114 0.072 0.026 0.610 130

Table 1: Comparison of the precision, recall, the Ω metric and the number of
removed edges |A| for the Louvain algorithm, and for our approach based on
different UNA and provenance definitions.

training set evaluation set
precision recall Ω |A| precision recall Ω |A|

iUNA-label-w2 0.168 0.108 0.619 262 0.065 0.016 0.617 175

iUNA-label-w2+weight 0.217 0.108 0.610 233 0.050 0.015 0.614 162

iUNA-label-w2+disambiguation 0.221 0.135 0.615 264 0.098 0.030 0.642 191

qUNA-comment-w1 0.324 0.031 0.595 14 0.244 0.004 0.562 24

qUNA-comment-w1+weight 0.159 0.016 0.579 17 0.111 0.002 0.575 27

qUNA-comment-w1+disambiguation 0.412 0.163 0.573 209 0.133 0.005 0.578 43

Table 2: Evaluation results with additional information

gold standard and across the entire identity graph. The bar-chart shows that
most of the triples are associated with a weight less than 5.

In addition, we find a significant amount of entities that correspond to dis-
ambiguation pages in Wikipedia. Of the 3,678 edges in the gold standard that
are identified as erroneous, 1,395 edges (38%) involve at least one entity about
disambiguation12. This can not only make the results less stable but also con-

12 The disambiguation entities were identified where there is a triple with the rela-
tion dbp:wikiPageUsesTemplate and the object dbr:Template:Disambiguation or
about a select of 17 multilingual relations with similar meaning.

Fig. 4: Weight distribution of the owl:sameAs links in the LOD Laundromat.
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firm our finding that the precision-recall is not suitable for this problem. For all
links in the gold standard, the error rate is between 27.27% and 71.81% when
disambiguation entities are involved. This is significantly higher than the aver-
age error rate in the gold standard. In addition, we noticed that after removing
501 disambiguation entities, the largest connected component is reduced from
177,794 to 82,685 entities (a reduction of 53.4%).

As a primitive experiment, we increase the weight of the corresponding soft
clause by 2 when the weight of the edge is ≥ 2. We take also such disambiguation
into account. If a clause is about an edge involving at least one disambiguation
entity, its weight is reduced by 5. Table 2 shows that considering disambiguation
entities may improve the Ω and the recall while only using the weight of the
edges results in no consistent improvement.

6 Discussion and Future Work

RQ1 was answered by defining the iUNA for large, integrated graphs. For RQ2
and RQ3, we validated against our gold standard and compared the iUNA
against the qUNA and the nUNA. We proposed and evaluated an algorithm
(RQ4) and further studied the effects of edge weights and disambiguation nodes
on the results (RQ5). Strictly speaking, our sample is still too small for an ac-
curate estimate of the error rate of the entire identity graph. Using the gold
standard, we found that among the 3,678 erroneous edges, only 5 have differ-
ent label-like or comment-like sources. This indicates that UNA can be used for
refinement but redundancy is not the direct cause of error. This is against the
conclusion of [11] (type 2 error: consistency and conciseness error). This obser-
vation also explains the slow performance of the SMT solver: it has to perform
sequences of back-tracking to “carry” inequality assertions through the edges.

The performance of our algorithm is sensitive to the parameters and hyper-
parameters. For example, the upper bound for each integer value M can signif-
icantly influence the results if too small. We plan to study how our algorithm
scales if given longer time, and compare it against other types of methods that
were mentioned in Section 1.1 to provide a complete benchmark.

In the gold standard, 211,348 out of 232,311 edges (90.98%) are about DB-
pedia entities between different languages13. Our further analysis shows that
among 3,678 erroneous edges, 3,029 involve DBpedia entities of different lan-
guages. This indicates that 82.35% of the errors come solely from relations be-
tween such entities. These links could be the result of automatic generation of
transitive closure or inherited errors as DBpedia enriches. These edges have not
only made the identity graph bigger (largest CC contains 177K entities), but
also directly unusable as the errors propagate through the graph due to the
transitivity of owl:sameAs. These experiments show the necessity of developing
accurate and scalable refinement algorithms, and the need to be applied before
consuming Linked Open Data in real-world scenarios.

13 We identify the language of an entity by its namespace. For example http://ru.

dbpedia.org/resource/ is assumed to be in Russian.
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