
Evolving Efficient Deep Neural Networks for Real-time
Object Recognition

Gongjin Lan
Department of Computer Science,
Vrije Universiteit Amsterdam

The Netherlands
g.lan@vu.nl

Lucas de Vries
Faculty of Science, University of

Amsterdam
The Netherlands

lucas.devries2@student.uva.nl

Shuai Wang
Department of Computer Science,
Vrije Universiteit Amsterdam

The Netherlands
s2.wang@vu.nl

ABSTRACT
While Deep Neural Networks (DNNs) achieve state-of-the-art ac-
curacy in object recognition, they rely on the deep networks with
millions or even billions of parameters. Current DNNs often take
expensive computation. Accelerating DNNs by reducing the pa-
rameters of DNNs is crucial for real-time object recognition on
low-performance computing hardware. This paper explores an evo-
lutionary approach to evolve efficient DNNs with desired accuracy
for real-time object recognition. This approach achieves the goal by
two design choices. First, NeuroEvolution of Augmenting Topolo-
gies (NEAT) is applied to evolve both weights and topology of
DNNs. NEAT evolves neural networks from simple initial topolo-
gies, which reduces the number of parameters of DNNs from mil-
lions to thousands. Second, we propose fitness functions to further
select the evolved DNNs with fewer parameters and high accuracy.
The experimental results show that the best evolved DNN recog-
nizes the objects (modular robots in an arena) on a microcomputer,
Raspberry Pi 3, with an accuracy of 95.6% and a speed of 5 fps. Last,
we test the approach on well-knownMNIST dataset for recognizing
multi-class objects. It also achieved the reasonable accuracy and
small size DNNs. This work can be extended to other real-time
tasks. We published the source code1 and video2 of results that our
approach recognizes two modular robots simultaneously in the real
world.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability;

KEYWORDS
Object recognition, Real-time, Neural networks, Neuroevolution,
NEAT, Evolving neural networks, Robot vision, Low-performance
computing hardware
ACM Reference Format:
Gongjin Lan, Lucas de Vries, and Shuai Wang. 2019. Evolving Efficient Deep
Neural Networks for Real-time Object Recognition. In Proceedings of the

1https://github.com/langongjin/Evolving-DNNs
2https://youtu.be/RVjSXMunY1c

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Genetic and Evolutionary Computation Conference 2019 (GECCO ’19). ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In recent years, DNNs have become the state-of-the-art models in
many areas of machine learning, particularly object recognition
such as face recognition [37, 38], pedestrian detection [27], vehicle
detection [24], etc. However, most current methods of optimizing
DNNs like back-propagation, are limited to optimize the weights of
DNNs [34]. The topology of DNNs is often designed by researchers
empirically. It is a tedious trial-and-error process and difficult to de-
sign the efficient DNNs as few parameters as possible for real-time
object recognition. To achieve high accuracy, the current methods
generally design the neural networks with deep layers topology.
However, these high-performing neural networks rely on deep
networks containing millions or even billions of parameters.

Although current DNNs have achieved remarkable accuracy,
they are usually applied on powerful hardware systems such as
GPU platforms and hardly implemented on Low-Performance Com-
puting Hardware (LPCH) because of the expensive computation.
Optimization algorithms like CMA-ES can be used to optimize the
topology of DNNs for the appropriate networks [32], instead of em-
pirical parameter tuning. Nevertheless, the structure of DNNs still
grows deeper and deeper, and often contains significant redundant
parameters that take expensive computation. Therefore, it is crucial
to generate the appropriate DNNs with fewer parameters, while
maintaining expected accuracy. In particular, this issue is extremely
important for real-time object recognition on LPCH.

This paper therefore proposes a method that evolves DNNs by
neuroevolution for real-time object recognition on LPCH like the
microcomputer, Raspberry Pi 3. Although accelerating DNNs by
reducing the parameter redundancy has attracted many research
attention, most of them are just relatively accelerated that compare
to the DNNs with millions of parameters. In this work, we use
NEAT algorithm to evolve both weights and the topology of DNNs
for real-time object recognition. It reduces the number of parame-
ters of DNNs from millions to thousands. Furthermore, we propose
fitness functions to evaluate the performance of evolved DNNs in
terms of accuracy and computation time. It further selects evolved
DNNs for lower computation time and desired accuracy. We apply
the best evolved DNN to recognize modular robots on LPCH. The
experimental results show that our method successfully evolves
DNNs for real-time object recognition. The best evolved DNN was
loaded and run on a Raspberry Pi 3 and recognizes modular robots
at 5 fps and 95.7% accuracy. Furthermore, we test the approach

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gongjin Lan, Lucas de Vries, and Shuai Wang

on the well-known MNIST dataset for recognizing multi-class ob-
jects. It achieves the small size DNNs and resonavle accuracy for
multi-class object recognition on MNIST dataset. The experimen-
tal results demonstrate that our approach evolves efficient DNNs
with thousands of parameters for both two-class and multi-class
real-time object recognition.

2 RELATEDWORK
State-of-the-art Object Recognition In recent years, DNNs be-
came the state-of-the-art models in object recognition [16]. For
example, the outstanding work [16] achieved breakthrough results
on the ImageNet dataset using a DNN containing 0.6 million nodes
and 61 million parameters (cost 240 MB storage) with five convolu-
tional layers and three fully-connected layers. Other models include
R-CNN [10], Faster R-CNN [29], YOLO [28], SSD [22]. Another ex-
ample is that [31] proposed a very deep network that contains 1.5
million nodes and 144 million parameters (takes 528MB storage)
for large-scale image recognition. The top face recognition results
[37, 38] were obtained with DNNs containing hundreds of millions
of parameters. Such huge DNNs can hardly reach real-time perfor-
mance on LPCH. Furthermore, a harsh reality is that recent neural
networks are deeper and deeper.
Real-time Object Recognition Although current DNNs achieve
remarkable accuracy, they are difficult to work on LPCH due to ex-
pensive computation and significant memory requirements. Some
recent works proposed improved approaches for efficient DNNs
with fewer parameters. Generally, optimization algorithms like
CMA-ES can be used to optimize the topology of DNNs for the
appropriate networks [32], instead of empirical parameter tuning.
[25] presented an optimized Fast R-CNN on a CPU and GPU plat-
form at 1.85fps. A YOLO-based low-complexity neural network
was proposed that works on a GPU platform for object recognition
[39]. Although there are many related works that generate DNNs
for real-time object recognition, these DNNs only can be run on
GPU platforms rather than LPCH like Raspberry Pi. For instance,
the accelerated DNN in our previous work [17] achieved a speed
of 1.76 fps on Raspberry Pi 3. However, it still can not meet the
requirement in many applications. Nevertheless, the structure of
DNNs would still grow deeper and deeper, and often contains sig-
nificant redundant parameters that take expensive computation.
Therefore, it is crucial to generate appropriate DNNs with fewer
parameters, while maintaining expected accuracy, especially for
real-time object recognition on LPCH.
Accelerating Neural Networks Current DNNs rely on the deep
networks with millions or even billions of parameters to achieve
impressive accuracy, but often take expensive computation. Thus,
accelerating DNNs by reducing the parameters of DNNs is crucial
for real-time object recognition. [2] presented a circulant projec-
tion approach to replace the conventional linear projection in fully-
connected layers for reducing the parameter redundancy of DNNs.
[20] proposed a method ESPACE to accelerate the DNNs by elimi-
nating the spatial and channel redundancy. A sparse decomposition
was used to reduce the parameter redundancy of DNNs in [21],
where the maximum sparsity is obtained by exploiting both inter-
channel and intra-channel redundancy. [12] described a method
that reduces parameters of well-known AlexNet from 61 million

to 6.7 million by pruning the redundant connections. Similarly,
[43] proposed a structured sparsity learning method to regularize
the topology of AlexNet, which achieves a speed at average 5.1×
speedup of computation. Furthermore, to compare with [43], [23]
adopted a Bayesian point of view through sparsity inducing priors
to prune the size of the network and furthermore reduce compute
time. It reached a speed up factor of around 8× on a Titan X (GPU)
platform. Although these methods accelerated the computation of
DNNs, these DNNs are only limited accelerated compare to the con-
ventional DNNs with millions of parameters on CPUs or/and GPUs
platform. In contrast, our work focus on evolving DNNs for fewer
parameters that makes it possible to work on LPCH for real-time
object recognition.
Evolving Neural Networks Evolutionary algorithms have been
a great interest in obtaining neural networks [7]. This approach is
called NeuroEvolution. Over the last decades, NeuroEvolution has
been successfully applied to many fields, e.g., general game playing
[13, 30, 33], evolutionary robotics [3, 45]. Among them, NEAT [36]
and HyperNEAT [35] are two successful algorithms that were pro-
posed to evolve neural networks. They made evolving DNNs more
practical for the evolution of both weights and topology in many
fields. For example, they have been successfully applied to the tasks
of evolutionary robotics [11, 18]. In the application of object recog-
nition, [6] proposed an evolutionary approach for real-time object
recognition by genetic programming, which works on a GPU plat-
form rather than LPCH. [8] proposed a genetic approach to images
classification that only tested on benchmark datasets rather than
real-time object recognition in real-world. Furthermore, it aims
to overcome the limitations of manually crafted architectures and
low interpretability for convolutional neural networks. Similarly,
[42] proposed variable-length particle swarm optimization to evolv-
ing deep convolutional neural networks for image classification
on GPUs platform. A recent work [26] proposed a new algorithm,
CoDeepNEAT, for optimizing deep architectures by extending exist-
ing methods of evolving neural networks to topology, components,
and hyper-parameters. In this work, we explore evolving efficient
deep neural networks for real-time object recognition on LPCH.

3 METHODOLOGY
NEAT and HyperNEAT are the most successful NeuroEvolutions
that have been applied to evolve neural networks in many fields.
HyperNEAT is an extension of NEAT method. It uses NEAT to
evolve the connection weights and network topology of Compo-
sitional Pattern Producing Networks (CPPNs). And then, CPPNs
generate connection weights of objective neural networks with
fixed topology. NEAT algorithm evolves both weights and topol-
ogy of neural networks directly. By contrast, HyperNEAT is more
suitable for evolving very large neural networks in weight space,
while NEAT is more suitable for evolving neural networks from
simple initial topology in both weight and topological space. In this
work, we therefore employ NEAT algorithm to evolve DNNs for
real-time object recognition. First, NEAT generates new DNNs by
evolving weights and topology for searching better DNNs. Second,
the features of samples in datasets are extracted and fed into new
DNNs. Subsequently, the evolved DNNs output the results of object
recognition. The performance of each evolved DNN is evaluated

Evolving Efficient Deep Neural Networks for Real-time
Object Recognition GECCO ’19, July 13–17, 2019, Prague, Czech Republic

by a fitness function whose output value depends on both accu-
racy and computation time. The process iterates until termination,
which is shown in Figure 1. In this section, we describe the details
of main steps including NEAT algorithm, input features, and fitness
functions.

NEAT New
DNNs

weights

topologies

Feature
Extractor

Evaluation
fitness

Datasets
(Ground truth)

NEAT Neural
Networks

weights

topologies

Feature
Extractor

Evaluation
fitness

Datasets
(Ground truth)

Figure 1: The work-flow of evolving DNNs includes three
main steps: evolving DNNs by NEAT, feature extracting,
evaluation by the fitness function. Note that, to observe the
evolving ofDNNs independently, thiswork designs the fixed
feature extractor that extracts informative feature instead
of evolving an feature extractor.

3.1 The NEAT algorithm
NeuroEvolution of Augmenting Topologies is a genetic algorithm
that evolves DNNs in weight and topological space, attempting to
search an optimal DNNs on both aspects of weights and topology
[36]. We summarize the properties of NEAT to address how it
evolves DNNs.

• NEAT evolves DNNs with a flexible topology, starting from
an elementary topology where all input nodes are connected
to all output nodes. In this way, the DNNs can be evolved
that are as fewer parameters as possible. The correct match-
ing of the genomes through marking genes with historical
markings.

• The addition of nodes and connections in neural networks
leads to an augmented topology. It allow to generate more
flexible network structures. NEAT searches optimal DNNs
through the weight space and the topological space simul-
taneously. There is no need for an initial or pre-defined
fixed-topology that relies on the experience of researchers.
Recombination and mutation induce an optimal topology of
DNN to real-time object recognition. For instance, the cross-
over of genomes and the removal or addition of connections
and nodes explore the different topology of DNNs.

• The solutions in the evolving population are grouped by
similarity into species. Each of solutions can compete only
with individuals in the same species.

In this work, we implement NEAT by employing an adaptable
library, MultiNEAT 3, which is friendly to develop with Python
bindings and has enhanced efficiency with its core components
written in C++.

3https://github.com/peter-ch/MultiNEAT

3.2 Input Features
For many practical problems, the input feature to a neural network
is a crucial factor for the final performance. Current feature ex-
tractors generally generate informative features by extracting high
dimensional features. For instance, convolutional feature extractors
in convolutional neural networks often include many convolutional
layers and many convolutional kernels each layer. They extract
informative but high dimensional features. However, High dimen-
sional input often increases the size of DNNs and thus take more
expensive computation for running DNNs. We therefore expect
that the input feature is low dimensional and informative. To ob-
serve the evolving of DNNs independently, this work uses the fixed
feature extractor instead of evolving an feature extractor. To find an
appropriate feature extractor, we compare the performance of the
two types of well-known feature extractors that output informative
features with moderate dimensions, include Sobel feature extrac-
tor [41] and Histogram of Oriented Gradients (HOG) [4] feature
extractor for evolving DNNs.

The Sobel feature extractor performs a 2D spatial gradient mea-
surement on images. It converts a pixel array P into the correspond-
ing gradient magnitude that represents meaningful feature with
less redundant [41]. The Sobel operator consists of a pair of 3 × 3
convolution kernels Gx and Gy , as shown below.

P =

P11 P12 P13
P21 P22 P23
P31 P32 P33

 , Gx =

−1 0 1
−2 0 2
−1 0 1

 , Gy =

1 2 1
0 0 0
−1 −2 −1

where Gx and Gy are horizontal and vertical kernels respectively
that calculate the gradient horizontally and vertically with a stride
of 3. Such gradients can then be combined to the absolute or ap-
proximate gradient magnitude [41]. In this work, we calculate the
absolute gradient magnitude on three colour channels as follows.[

Gr Gд Gb
]T
=

√
(P ·Gx)2 + (P ·Gy)2 (1)

where Gr , Gд , Gb are the absolute gradient magnitude of the red,
green, blue colour channels respectively. The edge feature on three
channels can be extracted when the process is applied to an image.

The Histogram of Oriented Gradients (HOG) feature extractor
was proposed in [4] which calculates the gradients of ROIs. In this
paper, we test our approach on HOG descriptor with two parameter
settings that have been demonstrated for moderate dimensions and
high informativeness, noted HOGa and HOGb [17]. The detailed
parameter settings are presented in Table 1.

ROIsize blockSize blockStride cellSize bins

HOGa (112,32) (8,8) (8,8) (4,4) 9
HOGb (112,32) (16,16) (8,8) (8,8) 9

Table 1: The parameter settings of HOGa and HOGb feature
extractors.

We test the three feature extractors above on the dataset in Table
3 to evolve DNNs. The Sobel convolution operator outputs a 1110
dimensional feature vector on 112 × 32 samples with a stride of
3. The feature extractors HOGa and HOGb output 2016 and 1404

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gongjin Lan, Lucas de Vries, and Shuai Wang

dimensions vectors respectively. The three feature extractors out-
put the features with different dimensions and informativeness as
the input of evolved DNNs. Therefore, the evolution of DNNs has
different initial neural networks and search space. The accuracy
during the evolution process is shown in Figure 2. The best evolved
DNN achieves 95.7% accuracy with Sobel feature extractor. Inter-
estingly, evolving DNNs with Sobel feature in 1110 dimensions
performs better evolution process than both HOGa in 2016 dimen-
sions and HOGb in 1404 dimensions. In the traditional approaches,
high dimensional features are more likely to contain informative
features that contributes to the accuracy than the low dimensional
features. However, the higher dimension features implies that the
corresponding evolved DNNs have more nodes in input layer and
a larger search space of the evolution. NEAT often achieves the
better performance in a small search space. Therefore, this work
choose the Sobel feature extractor due to the lower dimension of
input feature and better performance.

Figure 2: The performance of Sobel (green), HOGa (blue) and
HOGb (red) feature extractor for evolving DNNs on themod-
ular robots dataset. The solid lines are the average of accu-
racy. The dashed lines are the accuracy of best runs.

3.3 Fitness Function
Real-time object recognition on LPCH is usually not as complex
as generic object recognition on super computing hardware (e.g.,
GPUs platform). It often aims to recognize two-class objects (object
and non-object). But still, it is possible to be required to achieve
multi-class object recognition. To achieve efficient fitness functions
that can guide the evolution of DNNs for two-class and multi-class
objects, we propose two fitness functions for two-class and multi-
class objects respectively. This section provides the step-by-step
derivations that lead to the fitness functions.
Two-class fitness function. To be simple in description, we first
derive the fitness function by considering only accuracy without
computation time. For the two-class object recognition, the DNNs
output a two dimensional vector ®pi {(pi0,pi1) | pi0 + pi1 = 1},
where i is the index of samples in the dataset, and pi0 represents the
probability that the sample is recognized as the object. The label of a

sample is a two dimensional binary vector ®li ∈ {(1, 0), (0, 1)}, where
(1, 0) represents target and (0, 1) represents non-target. Considering
a situation that a sample is recognized as object by two evolved
DNNs with probabilities of 60% and 90% respectively, we expect
that the evolved DNN (with result of 90%) obtains a higher fitness
than another evolved DNN (with result of 60%) since this guides the
evolution of DNNs towards the optimal DNNs better. Therefore we
propose the fitness function4 that guides the evolution to maximize
the accuracy (®pi · ®li) and the absolute value of the difference |
pi0 − pi1 |. The evaluation on a sample can be expressed as follows.

fi =

{
®pi · ®li+ | pi0 − pi1 | if ®pi · ®li > 0.5
®pi · ®li− | pi0 − pi1 | −1 if ®pi · ®li ≤ 0.5

(2)

where ®pi · ®li is the accuracy, | pi0 − pi1 | aims to add a value that
scale up the fitness. For instance, a sample ®li = (1, 0) is recognized
as ®pi = (0.8, 0.2), fi therefore equals 1.4 (0.8 + (0.8 - 0.2)) rather
than 0.8 (the accuracy). The value of 0.5 is the threshold for the
correct classification that a sample is recognized as an object when
®pi · ®li > 0.5 (namely, pi0 > pi1).

An evolved DNNs can be evaluated in a training dataset of size
m by the fitness fa as follows.

fa =

∑m
i=0 fi

2m
(3)

where the coefficient 2 aims to normalize fa because the maximum
of fi is 2 when the ®pi is (1,0) and ®li is (1,0).

However, we cannot only consider the accuracy for real-time
object recognition in this work. Obtaining efficient DNNs with
fewer parameters for low computation time is one of the goals
that we expected. Therefore, it is crucial that the fitness function
can encourage the evolution of DNNs towards both high accuracy
and low computation time. The final fitness is proportional to fa
and inversely proportional to computation time. Hence, the fitness
function can be expressed as follows.

f(fa,Ct) = fa +
1

β · Ct
(4)

where Ct (in milliseconds) is the average evaluation time on the
training dataset. β is the weight of Ct , can bemodified depending on
the requirement at accuracy and computation time of specific tasks.
It aims to achieve a trade-off between accuracy and computation
time.
Multi-class fitness function. While real-time object recognition
on LPCH generally faces to simple tasks like recognizing two-class
objects (object and non-object), multi-class object recognition is
still likely to be required. We therefore propose a fitness function to
evaluate the performance of the evolved DNNs for real-time multi-
class object recognition. We provide a step-by-step derivation for
the fitness function stated in Equation 6.

First, we directly use the accuracy instead of the probability ®pi
in Equation 2. Second, we introduce standard deviation σ of the
number of correct recognition for each class objects to evaluate the
performance of the evolved DNNs. In our preliminary experiments,
we notice that the evolved DNNs often recognize the objects of
some classes with high accuracy but hardly recognize the objects of

4The well-known F1-score is not suitable in this work.

Evolving Efficient Deep Neural Networks for Real-time
Object Recognition GECCO ’19, July 13–17, 2019, Prague, Czech Republic

other classes correctly. For instance, assuming the 5 classes objects
from MNIST and 100 samples in each class are taken as the training
dataset, two evolved DNNs perform the same average number of
correct recognition but different distributions as (80, 79, 81, 78, 12)
and (70, 68, 71, 61, 60) respectively. We expect that the latter has
higher fitness because the objects of last class are hardly classified
correctly in the former. Furthermore, in the preliminary exper-
iments we also notice that, giving more evolutionary iterations
would hardly improve the accuracy of the former DNNs on the
fifth class object (0.12 accuracy) but the latter DNN is easier to
be evolved for higher accuracy. We therefore design the fitness
function to reward or punish the evolved DNNs for low or high
σ respectively as shown in Figure 3. We consider that the num-
ber of correct recognition for each class object has equally good
distribution when σ is less than a constant σ ′. In such cases, we
give a constant reward η to the evolved DNNs. Then, the reward is
gradually decreased over σ when σ > σ ′. Furthermore, the reward
equals zero and becomes a gradually increasing penalty (minus
value) to an evolved DNNs when σ > ζ .

 η

0.0

 σ′ ζ

R
ew

ar
d/

pe
na

lty

(σ′, η)

(ζ, 0)
ζ - σ′

Figure 3: Illustration on the reward/penalty over the stan-
dard deviation σ of the number of correct recognition in
each class for the multi-class object recognition.

Thus, the fitness function (denote fMa) is defined with the accu-
racy and the standard deviation σ as follows.

fMa =

{ Nc
m + η if σ < σ ′

Nc
m + η +

−η(σ−σ ′)
ζ −σ ′ if σ ≥ σ ′ (5)

where Nc
m is the accuracy, Nc is the sum of the number of correct

recognition for each class, andm is the size of the training dataset.
The parameters η, σ ′, ζ can be adjusted depending on the size of
the training datasets and tasks. In this work, we test the setting
η = 0.25, σ ′ = 20, ζ = 40 on MNIST dataset to recognize the
handwritten digits for appropriate reward and penalty.

Similar to Equation 4, we provide the fitness function for multi-
class object recognition to encourage both high accuracy and low
computation time as follows.

fM (fa,CtM) = fMa +
1

α · CtM
(6)

where CtM (in milliseconds) is the average evaluation time on
the training dataset. α is a parameter for adjusting the weight of

computation time CtM , which can be modified depending on the
requirement of tasks.

4 EXPERIMENTS
4.1 Experimental Set-up
The experiments include two parts: evolving DNNs on the desktop
computer with a 2.6GHz Intel i5 CPU and deploying the evolved
DNNs for real-time object recognition on Raspberry Pi 3 with a
1.2GHz ARMCPU in the real world. The evolution of DNNs is tested
on two datasets, including a self-defined modular robots dataset,
and MNIST dataset. In the preliminary experiments, we tested
different parameter settings in NEAT algorithm for expected per-
formance. The final main parameters of NEAT that we used in this
work are listed in Table 2. The parameters MutateAddNeuronProb

Parameter two-class Multi-class

PopulationSize 100 100
MinSpecies 5 5
MaxSpecies 15 15
OverallMutationRate 0.75 0.50
MutateAddNeuronProb 0.10 0.05
MutateAddLinkProb 0.10 0.03
MutateRemLinkProb 0.01 0
MutateWeightsProb 0.70 0.90
WeightMutationRate 0.40 1.0
WeightMutationMaxPower 0.50 1.0
WeightReplacementRate 0.20 0.20
WeightReplacementMaxPower 4.00 1.0
Elitism 0.01 0.01
Table 2: The main parameters setting of NEAT.

andMutateAddLinkProb aim to add a node and a connection respec-
tively for searching the appropriate topology. MutateAddLinkProb
attempts to add a new connection between two chosen nodes. If the
connection already exists, it is replaced by a new connection. These
operations improve the evolution of DNNs towards the suitable
topology with fewer parameters. Adding nodes or links guides the
evolution to more diversified DNNs. An evolved DNN generally
needs many iterations to search for superior weights.MutateWeight-
sProb andWeightMutationRate are two mutation probability for the
achievement that the weights are evolved sufficiently towards the
satisfied DNNs.

The preliminary results in this work demonstrated that Sigmoid
activation functions yield better DNNs than other activation func-
tions. Thus, we use the unsigned Sigmoid functions as the activation
functions for hidden and output node. The softmax function is ap-
plied to normalize the output of evolved DNNs as a categorical
probability distribution. As a result, the output of the final recogni-
tion is a vector ®pout (p1,p2, ...,pi , ...,pn | ∑n

i=1 pi = 1). In addition,
we tested many values of β in Equation 4 and α in Equation 6.
β = 10 and α = 10 are finally set for the evolution on robots dataset
and MNIST dataset respectively.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gongjin Lan, Lucas de Vries, and Shuai Wang

4.2 Experiments on Robots Dataset
In many practical tasks, there are often some specific constraints,
such as limited computational resources, a small memory capacity,
and limited physical size. For instance, the modular robots proposed
in [15], have only space inside to fit a small battery and a small
computer with low computational power. The same is true for
other types of robots like drones [40] and swarm robots [14]. These
constraints make real-time object recognition on LPCH particularly
challenging. In this work, the evolving DNNs is applied to achieve
real-time recognizing the modular robots.

4.2.1 Evolving on Robots Dataset. In object recognition, the com-
prehensiveness of the dataset is directly related to the performance.
We took a large number of images for the modular robots from
different views and distances to create a comprehensive dataset. All
of the images were captured when the modular robots were moving.
We divided the samples into the training and testing dataset, as
shown in Table 3. All of the samples have a resized resolution of
112 by 32 pixels.

Robots Noise Total

Training 2250 2164 4414
Testing 750 721 1471

Total 3000 2885 5885
Table 3: The statistics of the modular robots dataset.

We run the experiments with the main NEAT parameters as
specified in Table 2 on the modular robots dataset. Generally, NEAT
evolves neural networks from simple initial topologieswhich reduce
the number of parameters from millions to thousands. Furthermore,
we use the two-class fitness function in Equation 4 to evaluate the
performance of evolved DNNs. Which encourages the evolution of
DNNs towards both fewer parameters for low computation time
and high accuracy. To explore how the part of computation time in
fitness function further encourages the evolution of DNNs towards
lower computation time. We observe the fa and f (fa ,Ct) of top 10
evolved neural networks in a generation, are shown in Table 4. we
note that the evolved DNNN2 obtains higher fitness f (fa ,Ct) than
N1, but they have the same value of fa . Similarly, the evolved DNN
N7 ranks seventh by fa but ranks ninth by f (fa ,Ct). Therefore, the
evolved DNNs are further selected for lower computation time by
f (fa ,Ct). As such in each generation, the evolved DNNs are guided
to low computation time. It can be adjusted to higher or lower by
tuning the parameter β in Equation 4. Empirically, the parameter β
should be moderate in case the evolution cannot converge to the
satisfied accuracy and low computation time.

We run the evolution with the fitness function f (fa ,Ct) on the
modular robots dataset for 5 runs. Each run takes more than a day.
The fitness of the evolution process is shown in Figure 4.

During the evolution process, the size of evolved DNNs generally
increases to search the optimal structure in topological space. Al-
though NEAT often removes the connections for fewer parameters
by the parameter MutateRemLinkProb, it is essential to increase

DNNs fa f(fa,Ct) Ranking by fa Ranking by f(fa,Ct)

N1 0.513 0.605 1 2
N2 0.513 0.612 2 1
N3 0.491 0.591 3 3
N4 0.489 0.587 4 4
N5 0.481 0.579 5 5
N6 0.480 0.578 6 6
N7 0.473 0.571 7 9
N8 0.472 0.573 8 7
N9 0.470 0.571 9 8
N10 0.468 0.571 10 10

Table 4: The values of fa , f (fa ,Ct) of top 10 evolved DNNs
in a generation, and their ranking. The Ranking by fa and
f(fa,Ct) show the ranking lists respectively.

Figure 4: The average accuracy of evolving DNNs over 5 runs
with Sobel feature extractor on the modular robots dataset.
The lightblue shadow is the 95.45% confidence area (two stan-
dard deviations). The blue line is the average accuracy. Red
line is the best run with the best accuracy of 95.6%

nodes and connections for searching appropriate structures in topo-
logical space by the parameters MutateAddNeuronProb and Mu-
tateAddLinkProb. The best topology of evolved DNNs with f(fa ,Ct)
and fa in generation 400, 1200, 1960/2000 are shown in the top and
bottom of Figure 5 respectively. Furthermore, the corresponding
specification of the topologies is shown in Table 5. It shows that the
topology of DNNs is evolved to more and more complex networks
over generations for optimal structure. Although the topology of
DNNs is evolved towards deeper and deeper, the total number of
parameters still remains in thousands. The evolved DNNs with
f(fa ,Ct) have the smaller network than the evolved DNNs with fa .
The evolution with fitness function f (fa ,Ct) obtains the evolved
DNNs with subequal accuracy but fewer parameters than the evo-
lution with fitness function fa . Comparing to the traditional DNNs
with millions even billions of parameters, the evolved DNNs sig-
nificantly reduce the number of parameters for low computation
time. Therefore, our fitness function successfully encourages the
evolution of DNNs towards fewer parameters and high accuracy.

Evolving Efficient Deep Neural Networks for Real-time
Object Recognition GECCO ’19, July 13–17, 2019, Prague, Czech Republic

As shown in Table 5, evolution with fa tends to achieve high ac-
curacy by adding more connections searching topological space.
By comparison, evolution with f (fa ,Ct) achieves the DNNs with
fewer parameters and layers.

Generation: 400 Generation: 1200 Generation: 2000
Connections: 2346 Connections: 2506 Connections:2741
Accuracy: 89.6% Accuracy: 93.7% Accuracy: 95.6%

Generation: 400 Generation: 1200 Generation: 1960
Connections: 2363 Connections: 3177 Connections:3487
Accuracy: 92.9% Accuracy: 93.6% Accuracy: 95.7%

Figure 5: Six topologies of the best DNNs in 400, 1200 and
1960/2000 generations. The top three topologies are the
best DNNs in 400, 1200 and 2000 generations of the evolu-
tion with Sobel feature extractor and the fitness function
f (fa ,Ct). The bottom three topologies are the best DNNs in
400, 1200 and 1960 generations of the evolution with Sobel
feature extractor and the fitness function fa . Red connec-
tions indicate positive weights, blue connections indicate
negative weights. The input nodes are represented by green
points. The black points are hidden nodes.

4.2.2 Real-time object recognition. In the real-world tasks, we
aim to real-time recognize the modular robots. Therefore, we test
the best evolved DNNs on Raspberry Pi 3 and Raspberry Pi camera
V2. It mainly consists of two parts including searching ROIs and
classifying by the best evolved DNNs. The work-flow on Raspberry
Pi 3 is shown in Figure 6. We use the Fast ROIs Search (FROIS)
algorithm to propose the ROIs on images from the camera. The
FROIS algorithm has been demonstrated that it propose ROIs on the
images with a low computation on Raspberry Pi 3 in our previous
work [17]. The softmax function is applied to normalize the output
of evolved DNNs into a probability distribution over the output
classes. The results show that the ROIs on images are recognized
as Robot or Noise.

We test the computation time of recognizing modular robots
with the best evolved DNN and Sobel feature extractor as shown
in Table 6. The results are averaged over 1000 images. The best
evolved DNN with 2741 parameters takes an average of 6.0 ms to
recognize the modular robots. Note that, it takes only 3.2% of the
total computing time ttotal. Most of the computation time was spent

Layer
Nodes Best NN in

400 gen. 1200 gen. 2000/1960 gen.

Input layer 1110+1 1110+1 1110+1
Hidden layer 1 1 / 5 15 / 29 1 / 1
Hidden layer 2 80/82 140 / 5 30/3
Hidden layer 3 2 / 3 5 /348 1 / 1
Hidden layer 4 - - / 17 3/60
Hidden layer 5 - - / 3 1 / 1
Hidden layer 6 - - 213/6
Hidden layer 7 - - 11/452
Hidden layer 8 - - 1 / 2
Hidden layer 9 - - 1/32
Hidden layer 10 - - - / 2
Output layer 2 2 2

Total connections 2346/2363 2506/3177 2741/3487
Reduction in size 17 (0.7%) 671 (21.1%) 746(21.4%)

Table 5: Illustration of the topologies of six best DNNs in 400,
1200, 1960/2000 generation respectively. The left and right
in left/right are the numbers of connections of best DNNs
for the evolution with f (fa ,Ct) and fa respectively. The per-
centage is the ratio of reduction in size to the number of best
DNNs that evolved by fa .

Feature
Extractor

Best
Evolved NN ClassificationFast ROIs

search
Images from

camera

Neural Networks

Classification

Feature Extractor

Images from dataset

softm
ax

Robot

Noise

Figure 6: The work-flow of real-time recognizing modular
robots on Raspberry Pi 3 in real-world. Notice that the ROIs
(the region in the red bounding box) can be Robot or Noise.
The features were extracted by Sobel convolutional operator
which also can be HOGa or HOGb.

on reading images, searching the ROIs, and extracting feature on
Raspberry Pi 3 with limited computing resources.

Compared with the methods that work on CPUs or/and GPUs
platform we reviewed in Section 2, the best evolved DNN in this
work takes significant few computation time. For instance, in our
previous work [17], the accelerated 7 layers DNN with millions
of parameters that designed by trial-and-error, takes 568 ms to
recognize the modular robots at an accuracy of 96%. By contrast,
the approach in this paper evolves a DNN for recognizing the
modular robots on Raspberry Pi 3 at a speed of about 5 fps and an
accuracy of about 95.6% in real-world. Thus, NEAT successfully
evolved DNNs for real-time recognizing the modular robots with
low computation time.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gongjin Lan, Lucas de Vries, and Shuai Wang

tcaR tcon tnn ttotal

124.1ms 59.5ms 6.0ms 189.6ms
65.4% 31.4% 3.2% 100.0%

Table 6: The time component of recognizingmodular robots
on Raspberry Pi 3 with best evolved DNN and Sobel feature
extractor. tcaR is the computation time that taken for read-
ing an image and searching ROIs on the image. tcon is the
feature extraction time by Sobel feature extractor. tnn is the
computation time.

4.3 Experiments on MNIST dataset
The experiments on robots dataset have successful evolved DNNs
for real-time two-class object recognition. The approaches of real-
time object recognition on LPCH generally face to the simple task
like the recognition of object or non-object. Nevertheless, multi-
class object recognition is still likely to be required. We therefore
validate our approach on the dataset MNIST (a well-known dataset
of handwritten digits) 5 for multi-class object recognition. MNIST
dataset is widely used for training and testing in the field of ma-
chine learning [19]. MNIST dataset consists of samples of 28 by 28
greyscale pixels. The size of samples is small enough that we there-
fore directly take the value of pixels as the input of evolved DNNs.
Therefore, MNIST is the suitable dataset to provide clear insights
of evolving neural networks, which avoids the interference from
the poor feature extractors. Even though there are many studies
[1, 5, 9, 44] that evolve DNNs on MNIST dataset, they investigate
on the goals like high accuracy rather than evolving for both the
low computational cost and high accuracy DNNs with fewer pa-
rameters. We run the experiments of evolving DNNs on 5 classes
digits (0 ∼ 4) of MNIST rather than the full MNIST dataset with 10
classes digits. Because it generally not face to real-time recognizing
10 classes objects on LPCH. In this work, we aim to validate that
our approach can evolve the efficient DNNs with fewer parameters
and satisfied accuracy for multi-class object recognition on MNIST
dataset, rather than challenging the state-of-the-art accuracy.

The experiments evolve DNNs on the training samples of MNIST
dataset with 2 to 5 classes of digits. The accuracy of the best evolved
DNNs for 2 to 5 classes of digits is shown in Table 7. Interestingly,
the best accuracy of evolved DNNs decreases gradually when the
number of classes increases. While the input dimensions of evolved
DNNs are less than the evolution on the modular robots dataset,
the higher dimension output increases the search space of solutions.
NEAT algorithm often takes more iterations to search an satisfied
solution in a larger search space. Therefore, the best evolved DNNs
perform the lower accuracy for more classes of digits. The evolution
of DNNs needs more iterations to achieve the expected accuracy
and low computation time. We run the experiments with the pa-
rameter settings that are shown in Table 2. Empirically, recognizing
digits on MNIST is not complex so that the topological space is
not large. Therefore, we use a lower probability of adding neurons
MutateAddNeuronProb and links MutateAddLinkProb on MNIST
5Although the handwritten digits in MNIST dataset are not general objects in real
time object recognition, they are suitable to observe the evolving neural networks
independently because they do not need feature extractor.

Number of classes 2 3 4 5

Accuracy 99.7% 96.0% 91.1% 89.1%
Table 7: The accuracy of best evolved DNNs for multi-class
objects (2 to 5 classes) on MNIST dataset.

dataset than the modular robots dataset after preliminary testing.
The topologies of best evolved DNNs for recognizing 2 to 5 classes
of digits are shown in Figure 7 and the corresponding specification
of the topologies is shown in Table 8. As can be seen in Figure 7
and Table 8, the evolution on MNIST dataset achieves the DNNs
with few parameters in thousands at the satisfied accuracy.

2 classes 3 classes
Connections: 1647 Connections: 2480

4 classes 5 classes
Connections: 3244 Connections: 4012

Figure 7: Four topologies of best DNNs in 2000 generations
for 2, 3, 4, 5 classes of digits respectively. The red connec-
tions indicate positive weights, blue connections indicate
negative weights. The green points represent input nodes.
The black points are hidden nodes.

Layer

Nodes Classes
2 (0,1) 3 (0∼2) 4 (0∼3) 5 (0∼4)

Input layer 784+1 784+1 784+1 784+1
Hidden layer 1 52 1 66 1
Hidden layer 2 1 88 - 59
Hidden layer 3 - - - 1
Output layer 2 3 4 5

Total connections 1647 2480 3244 4012
Table 8: Illustration of the topologies of best evolved DNNs
that recognizing 2 to 5 classes of digits.

Evolving Efficient Deep Neural Networks for Real-time
Object Recognition GECCO ’19, July 13–17, 2019, Prague, Czech Republic

5 CONCLUSION
In this paper, we present an approach to evolve the efficient DNNs
with fewer parameters for real-time object recognition on LPCH.
Our approach reduces the parameters of DNNs in two ways. First,
NEAT algorithm is used to evolve DNNs starting from the elemen-
tary initial topology where all input nodes are connected to all
output nodes. This often reduces the parameters of DNNs from
millions even billions to thousands. However, the NEAT generally
increase the topology of DNNs by adding nodes and connections
for achieving the higher accuracy. The evolved DNNs with thou-
sands of parameters may still contain many redundant parameters.
Therefore, the evolved DNNs need to be further selected by fitness
functions. Second, we therefore propose the fitness functions that
consist of computation time and accuracy. In such way, the evolved
DNNs are further encouraged for both fewer parameters and high
accuracy. Finally, our approach successfully evolves DNNs that
achieve an accuracy of 95.6% and a speed at 5 fps on LPCH, Rasp-
berry Pi 3, for recognizing the modular robots. Furthermore, we
test the approach on 5 classes digits of MNIST dataset. The results
show that our approach successfully evolves DNNs with fewer pa-
rameters and reasonable accuracy for recognizing the handwritten
digits.

This work aims to provide a method that can evolve the effi-
cient DNNs with fewer parameters and a satisfied accuracy for
real-time object recognition on LPCH rather than challenging the
state-of-the-art in accuracy. While this work successfully achieves
the goal that evolving DNNs with fewer parameters and desired
accuracy for real-time object recognition on LPCH, there are still
some interesting ideas to further study in the further. First, we
observe that NEAT algorithm shows remarkable performance on
evolving the topology of DNNs. But the evolution on weights of
evolved DNNs is observed difficult for the convergence towards an
remarkable accuracy. Therefore, a hybrid approach to combine the
strength of NEAT and back-propagation could be explored in future
research, which is promising to surpass the accuracy achieved in
this work. Furthermore, reducing the dimension of the feature with
new extractor is also important for further work which reduces the
search space of NEAT algorithm.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Diederik M. Roijers and Dr.
Jadran Sirotkovic for their valuable comments and helpful sugges-
tions.

REFERENCES
[1] Filipe AssunÃğão, Nuno LourenÃğo, Penousal Machado, and Bernardete Ribeiro.

2018. DENSER: deep evolutionary network structured representation. Genetic
Programming and Evolvable Machines (2018), 1–31.

[2] Yu Cheng, Felix X. Yu, Rogerio S. Feris, Sanjiv Kumar, Alok Choudhary, and
Shi-Fu Chang. 2015. An Exploration of Parameter Redundancy in Deep Networks
with Circulant Projections. In Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV) (ICCV ’15). IEEE Computer Society, Washington, DC,
USA, 2857–2865.

[3] A. Cully and J. . Mouret. 2016. Evolving a Behavioral Repertoire for a Walking
Robot. Evolutionary Computation 24, 1 (March 2016), 59–88.

[4] N. Dalal and B. Triggs. 2005. Histograms of oriented gradients for human detec-
tion. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), Vol. 1. 886–893 vol. 1.

[5] Travis Desell. 2017. Large Scale Evolution of Convolutional Neural Networks
Using Volunteer Computing. In Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’17). ACM, New York, NY, USA, 127–128.
https://doi.org/10.1145/3067695.3076002

[6] Marc Ebner. 2009. A Real-Time Evolutionary Object Recognition System. In
Genetic Programming, Leonardo Vanneschi, Steven Gustafson, Alberto Moraglio,
Ivanoe De Falco, and Marc Ebner (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 268–279.

[7] A.E. Eiben and J. Smith. 2015. From evolutionary computation to the evolution
of things. Nature 521, 7553 (May 2015), 476–482.

[8] B. Evans, H. Al-Sahaf, B. Xue, andM. Zhang. 2018. Evolutionary Deep Learning: A
Genetic Programming Approach to Image Classification. In 2018 IEEE Congress on
Evolutionary Computation (CEC). 1–6. https://doi.org/10.1109/CEC.2018.8477933

[9] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha,
Andrei A. Rusu, Alexander Pritzel, and Daan Wierstra. 2017. PathNet: Evolution
Channels Gradient Descent in Super Neural Networks. CoRR abs/1701.08734
(2017).

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. 2014. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition. 580–587.

[11] Evert Haasdijk, Andrei A. Rusu, and A. E. Eiben. 2010. HyperNEAT for Locomo-
tion Control in Modular Robots. In Proceedings of the 9th International Conference
on Evolvable Systems: From Biology to Hardware (ICES’10). Springer-Verlag, Berlin,
Heidelberg, 169–180.

[12] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both Weights
and Connections for Efficient Neural Network. In Advances in Neural Information
Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett (Eds.). Curran Associates, Inc., 1135–1143.

[13] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone. 2014. A Neuroevolution
Approach to General Atari Game Playing. IEEE Transactions on Computational
Intelligence and AI in Games 6, 4 (Dec 2014), 355–366.

[14] Jacqueline Heinerman, Alessandro Zonta, Evert Haasdijk, and Agoston Endre
Eiben. 2016. On-line evolution of foraging behaviour in a population of real
robots. In European Conference on the Applications of Evolutionary Computation.
Springer, 198–212.

[15] M. Jelisavcic, M. de Carlo, E. Hupkes, P. Eustratiadis, J. Orlowski, E. Haasdijk, J. E.
Auerbach, and A. E. Eiben. 2017. Real-World Evolution of Robot Morphologies:
A Proof of Concept. Artificial Life 23, 2 (May 2017), 206–235.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (Eds.). Curran Associates, Inc., 1097–1105.

[17] Gongjin Lan, Jesús Benito-Picazo, Diederik. M. Roijers, Enrique DomÃŋnguez,
and A. E. Eiben. 2018. Real-Time Robot Vision on Low-Performance Computing
Hardware. In 2018 15th International Conference on Control, Automation, Robotics
and Vision (ICARCV). 1959–1965.

[18] Gongjin Lan, Milan Jelisavcic, DiederikM. Roijers, Evert Haasdijk, and A. E. Eiben.
2018. Directed Locomotion for Modular Robots with Evolvable Morphologies. In
Parallel Problem Solving fromNature – PPSNXV. Springer International Publishing,
Cham, 476–487.

[19] Yann LeCun. 1998. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/ (1998).

[20] Shaohui Lin, Rongrong Ji, Chao Chen, and Feiyue Huang. 2017. ESPACE: Ac-
celerating Convolutional Neural Networks via Eliminating Spatial and Channel
Redundancy.. In AAAI. 1424–1430.

[21] Baoyuan Liu, MinWang, Hassan Foroosh,Marshall Tappen, andMarianna Pensky.
2015. Sparse Convolutional Neural Networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.
In Computer Vision – ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling (Eds.). Springer International Publishing, Cham, 21–37.

[23] Christos Louizos, Karen Ullrich, and Max Welling. 2017. Bayesian Compression
for Deep Learning. Conference on Neural Information Processing Systems (NIPS)
(2017).

[24] Ping Luo, Yonglong Tian, Xiaogang Wang, and Xiaoou Tang. 2014. Switchable
Deep Network for Pedestrian Detection. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[25] H. Mao, S. Yao, T. Tang, B. Li, J. Yao, and Y. Wang. 2017. Towards Real-Time
Object Detection on Embedded Systems. IEEE Transactions on Emerging Topics
in Computing PP, 99 (2017), 1–1.

[26] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,
et al. 2019. Evolving deep neural networks. In Artificial Intelligence in the Age of
Neural Networks and Brain Computing. Elsevier, 293–312.

[27] W. Ouyang and X. Wang. 2013. Joint Deep Learning for Pedestrian Detection. In
2013 IEEE International Conference on Computer Vision. 2056–2063.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gongjin Lan, Lucas de Vries, and Shuai Wang

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. 2016. You Only Look Once:
Unified, Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 779–788.

[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans.
Pattern Anal. Mach. Intell. 39, 6 (June 2017), 1137–1149.

[30] Sebastian Risi and Julian Togelius. 2015. Neuroevolution in Games: State of the
Art and Open Challenges. IEEE Transactions on Computational Intelligence and
AI in Games 9 (10 2015).

[31] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv 1409.1556 (09 2014).

[32] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical Bayesian
Optimization of Machine Learning Algorithms. InAdvances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Eds.). Curran Associates, Inc., 2951–2959.

[33] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. 2005. Real-time neuroevolution
in the NERO video game. IEEE Transactions on Evolutionary Computation 9, 6
(Dec 2005), 653–668.

[34] Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. 2019. De-
signing neural networks through neuroevolution. Nature Machine Intelligence 1,
1 (2019), 24–35.

[35] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. 2009. A Hypercube-Based Encoding
for Evolving Large-Scale Neural Networks. Artificial Life 15, 2 (April 2009),
185–212.

[36] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
Through Augmenting Topologies. Evol. Comput. 10, 2 (June 2002), 99–127.

[37] Yi Sun, Xiaogang Wang, and Xiaoou Tang. 2015. Deeply learned face representa-
tions are sparse, selective, and robust. 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (2015), 2892–2900.
[38] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. DeepFace:

Closing the Gap to Human-Level Performance in Face Verification. 2014 IEEE
Conference on Computer Vision and Pattern Recognition (2014), 1701–1708.

[39] S. Tripathi, G. Dane, B. Kang, V. Bhaskaran, and T. Nguyen. 2017. LCDet: Low-
Complexity Fully-Convolutional Neural Networks for Object Detection in Embed-
ded Systems. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). 411–420.

[40] Gábor Vásárhelyi, Csaba Virágh, Gergő Somorjai, Tamás Nepusz, Agoston E.
Eiben, and Tamás Vicsek. 2018. Optimized flocking of autonomous drones in
confined environments. Science Robotics 3, 20 (2018).

[41] O Rebecca Vincent and Olusegun Folorunso. 2009. A descriptive algorithm for
sobel image edge detection. In Proceedings of Informing Science & IT Education
Conference (InSITE), Vol. 40. Informing Science Institute California, 97–107.

[42] B. Wang, Y. Sun, B. Xue, and M. Zhang. 2018. Evolving Deep Convolutional
Neural Networks by Variable-Length Particle Swarm Optimization for Image
Classification. In 2018 IEEE Congress on Evolutionary Computation (CEC). 1–8.
https://doi.org/10.1109/CEC.2018.8477735

[43] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
Structured Sparsity in Deep Neural Networks. In Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (Eds.). Curran Associates, Inc., 2074–2082.

[44] L. Xie and A. Yuille. 2017. Genetic CNN. In 2017 IEEE International Conference on
Computer Vision (ICCV). 1388–1397. https://doi.org/10.1109/ICCV.2017.154

[45] Jason Yosinski, Jeff Clune, DianaHidalgo, SarahNguyen, Juan Cristobal Zagal, and
Hod Lipson. 2011. Evolving robot gaits in hardware: the HyperNEAT generative
encoding vs. parameter optimization. In In Proceedings of the 20th European
Conference on Artificial Life. 890–897.

