

On the Analysis of Large Integrated Knowledge Graphs for Economics, Banking, and Finance

EcoFinKG 2022

Shuai Wang (https://shuai.ai)

The Knowledge Representation & Reasoning Group Vrije Universiteit Amsterdam

29th March, 2022

Content

- 1. Introduction
- 2. Integration
- 3. Analysis
- 4. Discussion
- 5. Conclusion

Analysis
Discussion

Discussion Conclusion

- 2007-10 US subprime mortgage crisis / 2007-08 global financial crisis
- company ownership & money laundering (Deloitte)
- the impact of the COVID-19 outbreak on Italian companies (Bellomarini et al.)
- customer banking (Shao et al.)
- public health policy, social resilience,

More projects that require bigger and and inter-disciplinary knowledge bases.

Integration Analysis

Discussion Conclusion

- Finance: Financial Industry Business Ontology (FIBO), Financial Regulation Ontology (FRO), Insurance Regulation Ontology (IRO), Fund Ontology (FO), etc.
- **Economics:** STW (Standard Thesaurus Wirtschaft) Thesaurus, JEL classification system, etc.
- Banking: The WBG Taxonomy, Bank Regulation Ontology (BRO), etc. Many are not open source projects.

Integration Analysis

Discussion

Conclusion

Our focus

- Economics, Finance, Banking are three closely related domains.
- Most ontologies are developed for domain-specific tasks.
- We have more projects that requires inter-disciplinary knowledge.

We study the integration and the resulting graph:

- 1 statistical analysis
- 2 identity links
- 3 (pseudo-)transitive relations

Integration Analysis

Discussion

Conclusion

The KGs (10 graphs + 1 mapping)

- the Financial Industry Business Ontology (we collected the FIBO ontology using OWL and FIBO vocabulary using SKOS)
- the Financial Regulation Ontology (FRO)
- the Hedge Fund Regulation (HFR) ontology
- 4 the Legal Knowledge Interchange Format (LKIF) ontology
- the Bank Regulation Ontology (BRO)
- 6 the Financial Instrument Global Identifier (FIGI)
- the STW Thesaurus for Economics (and its mappings)
- 8 the Journal of Economic Literature (JEL) classification system
- g the Fund Ontology

Integration

Analysis

Discussion

Conclusion

LogMap (web interface) without reasoner.

Table 1: Alignment of knowledge graphs

	FIBO- vD	FIBO- OWL	LKIF	FIGI	STW	JEL	Fund
FIBO-vD	-	599	1	147	12	204	11
FIBO-OWL	-	-	24	516	5	57	70
LKIF	-	-	-	1	0	0	23
FIGI	-	-	-	-	0	34	2
STW	-	-	-	-	-	2	0
JEL	-	-	-	-	-	-	1
Fund	-	-	-	-	-	-	-

Integration

Analysis

Discussion

Conclusion

RDFpro: http://rdfpro.fbk.eu/

Table 2: General statistics of knowledge graphs

Name	V	E	Size
FIBO-vD	17,547	28,128	3.1MB
FIBO-OWL	103,288	250,002	16MB
FRO	94,215	283,976	16MB
HFR	14,235	34,771	2.6MB
LKIF-Core	1,005	2,363	141KB
BRO	259,074	838,007	43MB
FIGI	12,180	16,434	822KB
STW	51,128	113,276	3.4MB
JEL	12,109	177,57	1.1MB
Fund	10,119	35,005	3.2MB
STW-mappings	78,398	177,603	11MB
alignment	2,327	1,698	255KB
integrated	610,866	1,778,755	93MB

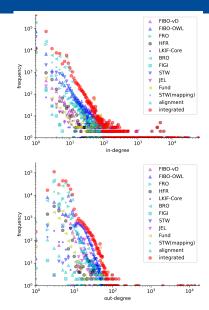
Analysis

Discussion

Conclusion

Table 3: Graph-theoretical statistics of knowledge graphs

Name	maxSCC	$p_S(\%)$	maxWCC	$p_W(\%)$
FIBO-vD	1	0.01	17,535	99.93
FIBO-OWL	297	0.29	103,208	100
FRO	17	0.02	94,015	99.79
HFR	849	5.96	14,230	99.96
LKIF-Core	88	8.76	963	95.82
BRO	13	0.01	258,982	99.96
FIGI	13	0.11	12,180	100
STW	6777	13.25	51,128	100
JEL	1	0.01	12,099	99.92
Fund	109	1.08	10,111	99.92
STW-mappings	617	0.79	78,398	100
alignment	3	0.13	119	5.11
integrated	36,853	6.03	610,792	99.98



Analysis

Discussion

Conclusion

On the Analysis of Large Integrated Knowledge Graphs for Economics, Banking, and Finance29th March, 2022

Analysis

Discussion

Conclusion

- 5,253 triples about owl:sameAs
- 29,556 triples about skos:exactMatch
- 8,172 triples about skos:relatedMatch
- 6,418 triples about skos:closeMatch

Analysis

Discussion

Conclusion

- owl:sameAs: 8 and 6
- skos:exactMatch: 119 and 45
- skos:relatedMatch: 21
- skos:closeMatch: 52

Not big at all. Can be manually refined.

Compare against LOD-a-lot

Integration
Analysis
Discussion

Conclusion

Introduction

- LOD-a-lot is a huge integrated graph of 650k knowledge graphs.
- LOD-a-lot has much more owl:sameAs than skos:broaderMatch.
- LOD-a-lot has much more nested cycles for (pseudo-)tansitive realtions.
- LOD-a-lot needs (semi-)automatic tools for the refinement.
- They show different graph-theoretical features.

Conclusion

Introduction
Integration
Analysis
Discussion

Conclusion

- produced a large integrated KG.
 - 1 studied how inter-connected the subgraphs are
 - studied how integration enriches information of entities
 - 3 examined the quality of the integrated graph
- our graph can be used for future inter-disciplinary work

Contact: shuai.wang@vu.nl

Introduction Integration Analysis

Discussion Conclusion

- interoperability
- use cases: social resilience, public health, etc.

