Knowledge Modelling and Strategy Engineering in Reconnaissance Blind Chess

Robin Stöhr Shuai Wang Zhisheng Huang

01. Introduction to RBC

- 02. Research questions
- **03.** Literature review
- 04. Knowledge in RBC
- 05. Analysis of different strategies
- 06. Discussions/Conclusions

Table of contents

Introduction to RBC

What is Reconnaissance Blind Chess?

"Reconnaissance Blind Chess (RBC) is a chess variant designed for new research in artificial intelligence (AI). RBC includes imperfect information, long-term strategy, explicit observations, and almost no common knowledge. These features appear in realworld scenarios, and challenge even state of the art algorithms." **Key mechanics**

"Fog of War"

Sense action

Next legal move counts

Complexity

Classical Chess

Reconnaissance Blind Chess 10¹³⁹

1043

10170

Research Questions

RQ 1

Can the estimation of the opponents knowledge contribute to improving one's game performance? RQ 2

What are the most effective strategies to diminish the game's inherent uncertainty?

RQ 3

Utilizing the current knowledge with the given uncertainty, what is the most effective move strategy?

.

Literature Review

Most bots were developed for the NeurIPS (Conference on Neural Information Processing Systems) 2021 and 2022 competition

StrangeFish

Uses classical Stockfish engine for move creation. Senses based on next move to make. (Johns Hopkins University)

JKU-CODA

Based on the history of the game. Uses Neural Nets and self-play learning for both move and sense. (Johannes Kepler University, Linz)

Chateaux

Constructs a belief state using an unweighted particle filter. Information of sampled states is converted into bit boards and those are used as input for a Neural Net. (Google)

NeurIPS 2021 RBC competition

			rank	the all	poard st	onent in	Hosets Banest	onent r	poves onent s	enses to minimize states
Bot	E.C.	EV.	- St	- St	- Sr	Ar.	Ar.	- V?-	- 9 ⁰¹	
Fianchetto	1759	1	•			•		•		
StrangeFish2	1662	2	•					•		
penumbra	1584	3	•	•		•	•			
Kevin	1544	4	•	•		•	•	•		
Oracle	1503	5	•					•	•	
Gnash	1454	6	•	•		•		•	•	
Marmot	1315	7	•	•		•	•	•		
DynamicEntropy	1299	8	•					•		
Frampt	1208	10	•							
GarrisonNRL	1140	11				•		•	•	
trout	1127	12						•		
callumcanavan	1066	13								
attacker	1049	14								
URChIn	854	15						•	•	
random	753	17								

Bot
Fianchetto
StrangeFish2
penumbra
Kevin
Oracle
Gnash
Marmot
DynamicEntrop
wbernar5
Frampt
GarrisonNRL
trout
callumcanavan
attacker
URChIn
armandli
random
ai_games_cvi

ARank

Knowledge modelling in RBC

Three ways of obtaining knowledge

- 1. Sense result
- 2. Move result
- 3. Opponents move result

*Results taken from roughly 500 historic games

Gaining insights from piece movement characteristics

Distance as a measure of aggressiveness

Uncertain pawn scout move

*Results taken from historic games

Knowledge modeling flow

Analysis of different strategies

Sense strategies

- **01.** Naive Entropy Sense **02.** Adapted Entropy Sense 03. Opponents move weights sense
- 04. Entropy with most likely states

Naive Entropy Sense

Find highest 3x3 square using Shannon entropy formula

$$H(X)=-\sum_{i=1}^n p(x_i)\log_2 p(x_i)$$

	A	В	C	D	E	F	G
	-0.00	0.45	-0.00	-0.00	-0.00	-0.00	0.45
- א	0.45	0.45	0.45	0.45	0.45	0.45	0.45
m -	0.55	0.28	0.55	0.28	0.28	0.55	0.28
4 -	0.28	0.28	0.28	0.28	0.28	0.28	0.28
ۍ - ۱	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
- Q	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
- ۲	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
co -	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00

Naive Entropy Sense Performance

Adapted Entropy Sense

Added manual heuristic to the naive entropy:

- King safety -
- Time factor decay -
- Piece weights -

Opponents move weights

- Assign scores for all moves for all boards.
- Scores are added 'to' and 'from' squares.
- Sense highest score area.

Likely states entropy sense

- For every board state, expand into all possible states and calculate which states are the most likely by taking the n best moves.
- Apply the adapted entropy sense based on the likely boards, in contrast to all boards.

Comparison

Move strategies

01. Baseline classical chess engine (SunFish)02. Baseline + Theory of Mind03. Neural Network approach (Lc0)

Baseline

- Assign moves scores to all boards using a classical chess engine
- Weigh those moves with the 'extremeness' of the boards.
- Take move with highest score.

Baseline + ToM

- Using a graph representation for the complete game history.
- Replay the game for every leaf node from the opponents point of view
- Take an average of the possible boards from the opponents point of view for all board states, as the new scores
- Continue in the same way

Neural Network based approach

- Utilizing Leela chess zero -
- A single forward pass provides scores for the board evaluation AND for all possible moves --> We are able to compute wary higher quantities
- Indexed based penalty system for moves

$$pv = 4 \cdot \log(idx + 1)$$

Move strategies comparison

	Scorca (Sunfish)	Scorca (Sunfish+ToM)	Trout	StrangeFish(v2)
Sunfish	-	_	60%	-
Sunfish + ToM	70%	-	70%	-
Leela Chess	100%	100%	90%	70%

Discussion + Conclusion

Coming back to the research questions:

RQ1: We used measures to estimate the opponents knowledge of the field and incorporated that in the decision making of our classical agent, resulting in better moves.

RQ2: We proposed a strategy to have an entropy based scanning in combination with a Neural Network based chess engine which resulted in the best performance in eliminating uncertainty.

RQ3: We evaluated the performance of different strategies and found a Neural Network based approach to lead to the best results. Combination with ToM further increases this, but is not feasible due to time constraints.

Questions

