

Refining Transitive and Pseudo-Transitive Relations at Web Scale

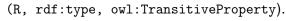
Shuai Wang, Joe Raad, Peter Bloem, Frank van Harmelen

KR&R Group, Vrije Universiteit Amsterdam

LISN, University of Paris-Saclay 24th January, 2022

Content

- 1. Introduction
- 2. Related Work
- 3. Measures
- 4. Algorithm
- 5. Gold Standard
- 6. Implementation
- 7. Evaluation
- 8. Contributions



Introduction

Introduction

The Problem

- Related Work
- Hypotneses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- examples of transitive relations:
 - rdfs:subClassOf and rdfs:subPropertyOf
 - dbo:previousWork and dbo:subsequentWork
 - dbo:isPartOf and dc:hasPart
 - dbo:predecessor and dbo:successor
 - prov:wasDerivedFrom
 - dc:creatorOf
 - dependency, causality, subsequent event, ownership, etc.

Introduction

Introduction

The Problem

- Related Work
- Hypotheses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- pseudo-Transitive relations: intended to be transitive and anti-symmetric, even though not formally asserted.
 - Transitivity + cycles = confusion + errors.

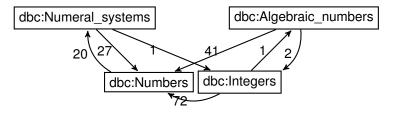


Figure 1.1: An example subgraph of skos:broader with weights.

Transitive Relations in the LOD Cloud

Introduction

The Problem

- Related Work
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- LOD-a-lot is the integrated result of 650K datasets in the LOD Laundromat, a crawl of the LOD cloud.
- **2**,486 transitive relations \approx 2.7% of all triples.
- Closure under owl:inverseOf and rdfs:subPropertyOf.
- **8**,804 relations in closure \approx 19.5% of all triples.
- Investigate only 10 popular (pseudo-)transitive relations.
- Exclude owl:sameAs and foaf:knows.

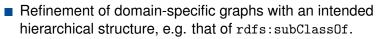
The Problem

- Introduction The Problem Related Work Hypotheses Measures Algorithm Gold Standard Implementation
- Evaluation
- Contributions

Issue often not a directed acyclic graph (DAG).Task remove as few edges as possible to make it acyclic.

Complexity = Minimum Weighted Feedback Arc Set (MWFAS) problem in graph theory. It's APX-hard.

Intuition nested cycles suggest erroneous edges.



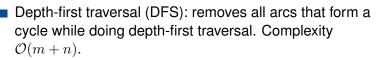
Related Work 1

Introduction The Problem

Related Work

- Hypotheses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- Often first infer a graph hierarchy and then use the pre-defined roots for one dataset [Sun et al.].
- Integrated graphs at web-scale with very limited efficiency and scalability [Wang et al.].
- Wikipedia category graph and requires external information in English [Paulheim et al.].



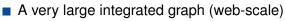
Related Work 2

Introduction The Problem

Related Work

- Hypotheses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- Greedy (GRD): greedy search with "sinks" and "sources". Complexity: O(m + n).
- **•** KwikSort (KS): quick sort. Complexity: $O(n \log n)$.
- BergerShor(BS): starts with a random permutation and compares the in-degree and out-degree of the vertices. Complexity: O(m + n).



Introduction

Related Work

- Hypotheses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- Cross-dataset/domain/namespace
- Multilingual

The Challenge

- No hierarchy No root node
- Complex nested cycles
- No manually annotated datasets for evaluation
- No measure or statistics reported

Introduction

- Related Work Hypotheses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

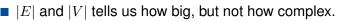
Hypotheses

Hypothesis 1

By considering **graph structural properties**, we can remove fewer edges than general-purpose graph theoretical methods. > graph structural properties := how edges are involved in complex

Hypothesis 2

nested cycles


Using the reliability of triples (weights), we can improve the accuracy of identifying erroneous edges.

Why Measures?

- Introduction The Problem
- Related Work Hypotheses
- Measures
- Algorithm Gold Standard Implementation
- Evaluation
- _____
- Contributions

Existing measures: Average Clustering Index, Global Reaching Centrality, etc.

Introduction

Why Measures?

The Proble	m
Related	Work
Hypotheses	5

Measures

F

- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- Q1: Where are the cycles?
- Q2: How complex are they?

Introduction The Problem

Related Work Hypotheses

Measures

- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

Answer for Q1: Strongly Connected Components

- A Strongly Connected Component (SCC) is a subgraph where any two of its vertices can be reached by a path and is maximal for this property.
- an SCC = the maximal subgraph that is strongly connected.

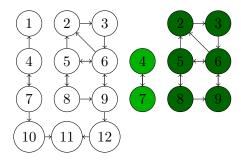
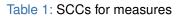


Figure 3.1: An example graph (*G*) and its SCCs.



SCCs for Measures

- Introduction The Problem
- Related Work

Measures

- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

Graph	#Edges	#Vertices	#Edges of SCCs	#Vertices of SCCs
skos:broader	11.8m	5.7m	356.9k	82.0k
skos:narrower	817.1k	737.3k	48	24
rdfs:subClassOf	4.4m	3.6m	1.4k	837

OMG! We can neglect a lot of edges!

Answer for Q2: New measures

ntr	oduction	
The	Problem	

Related Work

Measures

Algorithm

- Gold Standard
- Implementation

Evaluation

Contributions

	Easy Cases	Harder Cases
Graph Property	size-two cycles	longer chains or nested
Reason of Cycle	direction of relation	other reasons

Intuition: proportion of the easy ones and the hard ones, respectively.

Introduction The Problem

Related Work Hypotheses

Measures

Algorithm Gold Standard Implementation Evaluation

Contributions

Alpha measure

- numerator: #edges in cycles of size two.
- denominator: #edges in its SCCs.

Beta measure

First, remove cycles of size two from G to get G'.

• numerator: #edges remain in the SCCs of G'.

denominator: #edges in its SCCs.

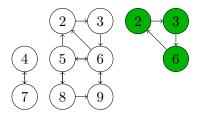
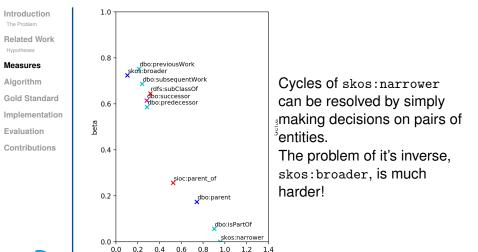
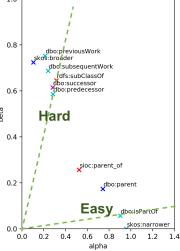



Figure 3.2: The SCCs of G and the SCCs of G'.

Answer for Q2: New measures

alpha



Gamma-Delta measure

Introduction The Problem Related Work Hypotheses Measures Algorithm Gold Standard Implementation Evaluation Contributions 0.4 -

Gamma and delta estimate the effort required to make a graph cycle-free.

Refining Transitive and Pseudo-Transitive Relations at Web ScaleLISN, University of Paris-Saclay 24th January,

מכורם

Algorithm

- Related Work
- Measures

Algorithm

Gold Standard Implementation Evaluation Contributions We propose a divide-and-conquer algorithm:

- Divide the SCCs into partitions (if too big).
 - Identify edges to remove.
- Remove identified edges and compute new SCCs.
- Repeat until all the cycles are resolved.

Algorithm: Graph partitioning

- Introduction The Problem
- Related Work
- Measures
- Algorithm
- Gold Standard Implementation Evaluation
- Contributions

- SMT solvers can not handle some big SCCs.
- In graph theory: k-cut problem.
- There is an efficient algorithm.
- Designed two strategies for partitioning.

Algorithm: Sampling Cycles

- Introduction The Problem
- Related Work
- Measures

Algorithm

- Gold Standard Implementation Evaluation
- Contributions

- Face a **combinatorial explosion** when listing all cycles from a graph.
- Designed two strategies for the sampling of cycles.
- A bounded number of cycles for each round.

Algorithm: Resolving Cycles

Introduction The Problem

- Related Work
- Measures

Algorithm

- Gold Standard Implementation **Evaluation** Contributions
- We remove all the edges whose propositional variables are False.

- Encode constraints to an SMT solver.
- Introduce a propositional variable for each edge $p_{(v_i,v_j)}$.
 - **1** A (hard) clause for each cycle v_1, \ldots, v_k :

$$[\neg p_{(v_1,v_2)} \lor \ldots \lor \neg p_{(v_{k-1},v_k)} \lor \neg p_{(v_k,v_1)}].$$

2 A (soft) clause $[p_{(v_i,v_i)}]$ for each edge e with its weight.

Weights

- Introduction The Problem
- Related Work
- Measures
- Algorithm
- Gold Standard Implementation Evaluation
- Contributions
- Counted weights: count the number of relevant datasets for an edge in the LOD Laundromat.
 - Inferred weights: use logical redundancy.

Weights

Introduction The Problem

Related Work

Measures

Algorithm

Gold Standard Implementation Evaluation Contributions


```
Inferred weight for (A, rdfs:subClassOf, B) :
```

- weight 2 if also (A, owl:equivalentClass, B) or its reverse.
- weight 1 otherwise.

Inferred weight for (S skos:broader T):
weight 2 if also (T, skos:narrower, S).
weight 1 otherwise.

Gold Standard

- Introduction The Problem
- Related Work
- Hypotheses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- Manually annotated triples in the subgraphs regarding rdfs:subClassOf and skos:broader.
- G1: randomly pick 500 edges.
- G2: a variant way that splits that of size two with the rest (200+500 edges).
- Only edges in SCCs and neglected the rest.
- We developed a tool for annotation, namely ANNit.

Implementation and Experimental Setting

- Introduction The Problem Related Work
- Hypotheses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- Two partitions at each step, i.e. k = 2.
- 3,000 cycles obtained at each step.
- Tarjan, Pymetis, Z3.
- SMT's time bound = 10 seconds.

Evaluation: Hypothesis 1

Introduction The Problem

- Related Work
- Measures
- Algorithm
- Gold Standard
- Implementation

Evaluation

Contributions

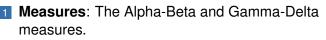
Relations	Scope	BS	GRD	KS	DFS	Approach
skos:broader	Overall	1m	493k	5m	125k	114k
	In SCCs	327k	356k	177k		
rdfs:subclassOf	Overall	4m	25k	219.2	529	330
	in SCCs	1k	430	716		
dbo:isPartOf	Overall	18k	2,175	459k	2,286	2,143
	In SCCs	3k	2,153	2,331		
dbo:successor	Overall	85k	24k	218k	17k	13k
	In SCCs	43k	17k	29k		

Supports Hypothesis 1: taking the graph structure into account, we removed the least amount of edges.

Evaluation: Hypothesis 2

- Introduction
- Related Work
- Hypotheses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

Relations	BS	GRD	KS	DFS	Approach with counted weights
skos:broader	0.32	0.42	0.33	0.35	0.44
rdfs:subclassOf	0.40	0.42	0.38	0.43	0.53


Supports Hypothesis 2: using weights can improve the precision for skos:broader and reduce the removed edges.

List of Contributions

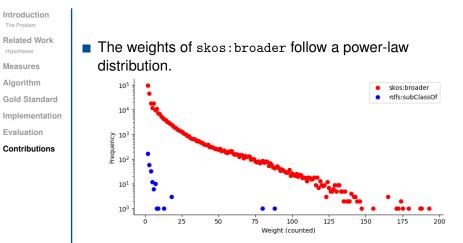
- Introduction The Problem
- Related Work
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- Algorithm: a generic scalable approach for the refinement of (pseudo-)transitive relations using an SMT solver by exploiting Strongly Connected Components.
 - **Results**: our results support our hypotheses.
- **Datasets**: a dataset of ten (pseudo-)transitive relations with weights.
- **5 Gold standard**: thousands of manually annotated triples.

Thank You for your attention!

Contact: shuai.wang@vu.nl

Discussion


- Introduction The Problem Related Work
- Hypotheses
- Measures
- Algorithm
- Gold Standard
- Implementation
- Evaluation
- Contributions

- Edges removed during graph partitioning.
- Unstable results for rdfs:subClassOf.
- Counted weights are better than inferred weights.
- P2S1 is the suggested parameter setting when weights are present.
- good precision, bad recall.

Discussion

