

Refining Large Identity Graphs using the Unique Name Assumption

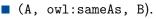
Under submission at ESWC 2022 (research track)

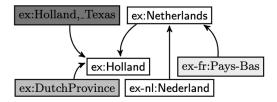
Shuai Wang, Joe Raad, Peter Bloem, Frank van Harmelen

KR&R Group, Vrije Universiteit Amsterdam

10th January, 2022

Content

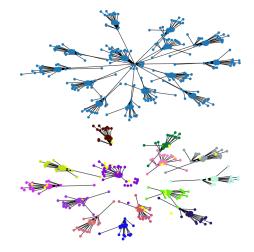

- 1. Introduction
- 2. Testing UNA
- 3. Algorithm
- 4. Evaluation
- 5. Contributions
- 6. Discussion



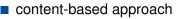
Introduction

- Testing UNA The Gold Standard Validating UNA Reliability
- Algorithm
- Evaluation
- Contributions
- Discussion

- owl:sameAs is an equivalence relation : transitive, symmetric, reflexive.
 - Error rate: 3 4%, or as high as 20%.



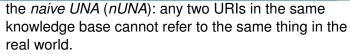
- Testing UNA The Gold Standard Validating UNA Reliability
- Algorithm
- Evaluation
- Contributions
- Discussion

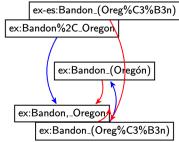


Related Work

- Testing UNA The Gold Standard Validating UNA Reliability
- Algorithm
- Evaluation
- Contributions
- Discussion

- network-based approach (Louvain)
- inconsistency-based approach





The UNA

- Testing UNA The Gold Standard Validating UNA Reliability
- Algorithm
- Evaluation
- Contributions
- Discussion

- the quasi UNA (qUNA) extends this definition by taking the redirect relations (between 6 major hubs) and dead nodes into account.
- we also found entities that only differ in encoding: encoding equivalence.

The Challenge

- Testing UNA The Gold Standard Validating UNA Reliability
- Algorithm
- Evaluation
- Contributions
- Discussion

- need a large gold standard (so no reliable evaluation)
- no redirect graphs
- no graphs about encoding equivalence
- no definition about provenance
- no UNA definitions has been validated at large scale

Provenance

Introduction

Testing UNA The Gold Standard Validating UNA Reliability

Algorithm

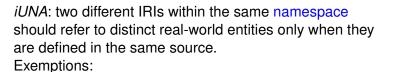
Evaluation

Contributions

Discussion

let $\eta(e_i)$ be the sources of an entity e_i . Explicit sources: the files where there are triples of rdfs:isDefinedBy*.

Implicit label-like sources: the files where there are triples of rdfs:label*.


Implicit comment-like sources: the files where there are triples of rdfs:comment*.

* or any equivalent relation or sub-properties

internal UNA (iUNA)

- Testing UNA The Gold Standard Validating UNA Reliability
- Algorithm
- Evaluation
- Contributions
- Discussion

- redirects
- encoding equivalence
 - exceptions while resolving the IRI:
 - dead node
 - not found
 - unresolvable
 - redirects until reaching some error or not found
 - or has timeout error while resolving

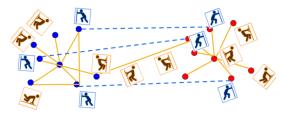
The Problem

Introduction

Testing UNA The Gold Standard Validating UNA Reliability

Algorithm

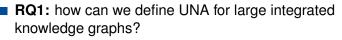
Evaluation


Contributions

Discussion

Issue A very large subgraph about owl:sameAs (550 million nodes in LOD-a-lot).
 Task remove as few edges as possible.
 Complexity = APX-hard (has a polynomial-time approximation).

Intuition pull & push



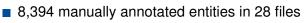
Research Questions

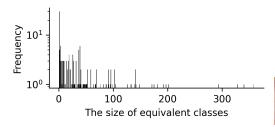
Introduction

Testing UNA The Gold Standard Validating UNA Reliability

- Algorithm
- Evaluation
- Contributions
- Discussion

- **RQ2:** how do we validate the definitions proposed?
- RQ3: can UNA give a reliable indication of identity errors in practise?
- **RQ4:** can we define an efficient algorithm for the refinement of the identity graphs?
- RQ5: is it possible to improve the results using additional information from the graph?




The Gold Standard

- Testing UNA The Gold Standard Validating UNA Reliability
- Algorithm
- Evaluation
- Contributions
- Discussion

- a total of 232,311 owl:sameAs links
- 11.75% entities are 'unknown'
- the error rate is between 1.58% and 9.98%

Validating UNA

Introduction

Testing UNA The Gold Standard

Validating UNA Reliability

Algorithm

Evaluation

Contributions

Discussion

Does the UNA hold using label-like sources?

- nUNA: 93.50%
- **qUNA:** 94.43%
- iUNA: 94.11%

Using comment-like sources:

- nUNA: 97.46%
- **qUNA:** 96.77%
- iUNA: 97.09%

Yes, very much so!

Reliability

Introduction

- Testing UNA The Gold Standard Validating UNA Reliability
- Algorithm
- Evaluation
- Contributions
- Discussion

RQ3: Can the UNA give a reliable indication of identity errors in practice?

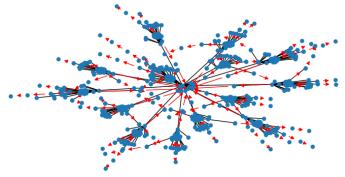
Baseline (label-like sources): error rate of random pairs: 47-68%.

- nUNA: 61.79% pairs violate; error: 33.31 49.89%.
- qUNA: 41.23% pairs violate; error: 33.28 51.87%.
- iUNA: 0.78% pairs violate; error: 6.10 36.69%.

Reliability: Redirect

Introduction

Testing UNA The Gold Standard Validating UNA Reliability

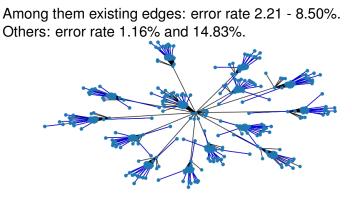

Algorithm

Evaluation

Contributions

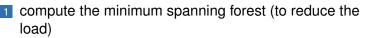
Discussion

Among them existing edges: error rate 1.47 - 7.69%. Others: error rate 4.29 - 6.32%.



Reliability: Encoding Equivalence

- Testing UNA The Gold Standard Validating UNA Reliability
- Algorithm
- Evaluation
- Contributions
- Discussion


Algorithm

Introduction

Testing UNA The Gold Standard Validating UNA Reliability

Algorithm

- Evaluation
- Contributions
- Discussion

- 2 sample some edges from the original graph
- 3 assign an integer to each node
- 4 the (weighted) clauses are equivalence relations between these integers
- 5 positive weights for existing edges
- 6 negative weights for pairs violating the (chosen) UNA.
- 7 repeat until no such pair found or no edge removed

Introduction

Algorithm

Testing UNA		
The Gold Standard		Algorithm 2: partition_iter
Validating UNA Reliability		 Input: a graph of connected component G_{cc}, a graph of redirect G^R_{cc}, a graph of equivalence under various encodings G^R_{cc}, a weighting scheme w Result: s, a set of edges removed A_{cc}
Algorithm		2 obtain a set of pairs P violating the UNA; 3 if P ≤ 1 then 4 return ('success', ∅)
Evaluation	Algorithm 1: partition 1 Input: an identity graph G_i a graph of redirect G^R , a graph of equivalence	5 initiate an SMT solver o; 6 # hard clauses ; 7 foreach entity s in Gec do
Contributions	under various encodings G^E , a weighting scheme w Result : status s, a set of edges removed A, the graph of partitions G_P 2 initiate A as an empty set;	8 we introduce an integer variable I_s and assert hard clauses $(0 \leq I_s)$ and $(I_s \leq M)$
Discussion	s let status s, removed edges $A = partition.iter(G, G^R, G^E, w);$ 4 If a is error then 5 \lfloor return (error', \emptyset, G) 6 while $ A $ is not increasing (no new dge to remove) do 7 $ $ let H be the new graph of G with A removed; 8 obtain H_{ees} , the graphs for each connected component of G' ; 9 $ $ for each $H_{ee} \in H_{ees}$ do 10 $ $ obtain the corresponding subgraphs H_{ee}^{a}, H_{ee}^{a} from G^{a}, G^{E} respectively; 11 $ $ $(S', A') = partition.iter(H_{ee}, H^{R}, H^{E}, w);$ 13 $ $ $L : A \cup A'$ 6 $ $ else $ $ return ('error', A) 14 $ $ else $ $ return ('error', A) 15 return ('error', A).	 9 # soft clauses ; 10 let F be the minimum spanning forest of G_{sc}; 11 randomly sample a small portion of B edges in G_{sc} and add to F; 12 obtain G⁰_{sc} the undirected graph of the (directed) graph G⁰_{sc}; 13 foreach pair f = (s, t) in F∪P do 14 limitate soft clause c , according to w 15 foreach pair r = (s, t) in G⁰_{sc} UC⁰_{sc} do 16 lif s and t are variable them 17 limitate/update the weight of a soft clause c, according to w 18 add all soft and hard clauses to c; 19 let s be the result of a farts softwign and m be the model (if any); 20 lif datas s is 'unknown' then 21 lift and (uncers, 0) 22 alse 23 let A_{cb} be the set of all removed edges of F; 24 reture (vacess', A_{cb}).

Algorithm: Weights

Introduction

Testing UNA The Gold Standard Validating UNA Reliability

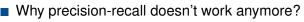
Algorithm

- Evaluation
- Contributions
- Discussion

• the weighting scheme: $w = (f_G, f_R, f_E, f_P)$

- the weight of an edge c_e : $f_G(c_e) + f_R(c_e) + f_E(c_e) + f_P(c_e)$
- two weighting schemes for evaluation: w_1 and w_2

Evaluation


Testing UNA The Gold Standard Validating UNA

Algorithm

Evaluation

Contributions

Discussion

a new measure

$$\Omega(G') = \sum_{C \in G'_{ccs}} \sum_{Q_e \in E(C)} \frac{|Q_e|}{|V|} \frac{|Q_e|}{|O_e|} \frac{|Q_e|}{|C|}$$

 \blacksquare C iterates over all connected components in G'

- *E*(*C*) is a partitioning of the nodes in *C* by equivalent class
- \bullet O_e is the set of all entities in G' referring to e.

Evaluation

Introduction

Testing UNA

The Gold Standard Validating UNA Reliability

Algorithm

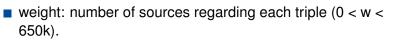
Evaluation

Contributions

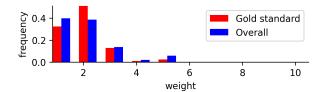
Discussion

	0				evaluation set				
	precision	recall	Ω	A	precision	recall	Ω	A	
Louvain algorithm	0.020	0.759	0.084	39,302	0.039	0.660	0.083	$43,\!642$	
qUNA-label- w_1	0.300	0.061	0.587	14	0.417	0.006	0.607	57	
qUNA-label-w ₂	0.237	0.083	0.618	88	0.167	0.004	0.576	53	
qUNA-comment- w_1	0.324	0.031	0.595	14	0.244	0.004	0.562	24	
qUNA-comment- w_2	0.236	0.104	0.614	91	0.199	0.021	0.591	79	
iUNA-label- w_1	0.186	0.077	0.605	101	0.086	0.026	0.585	35	
iUNA-label- w_2	0.168	0.108	0.619	262	0.065	0.016	0.617	175	
iUNA-comment- w_1	0.187	0.053	0.609	91	0.146	0.009	0.575	42	
iUNA-comment- w_2	0.084	0.003	0.618	114	0.072	0.026	0.610	130	

Evaluation


Introduction

Testing UNA


- The Gold Standard Validating UNA Reliability
- Algorithm

Evaluation

- Contributions
- Discussion

 DBpedia disambiguation nodes: corresponding to Wikipedia disambiguation pages.

Evaluation: improving the results

Introduction

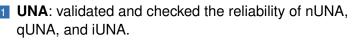
Testing UNA

- The Gold Standard Validating UNA Reliability
- Algorithm

Evaluation

- Contributions
- Discussion

	training set				evaluation set				
	precision	recall	Ω	A	precision	recall	Ω	A	
iUNA-label-w ₂	0.168	0.108	0.619	262	0.065	0.016	0.617	175	
iUNA-label-w ₂ +weight	0.217	0.108	0.610	233	0.050	0.015	0.614	162	
iUNA-label-w ₂ +disambiguation	0.221	0.135	0.615	264	0.098	0.030	0.642	191	
qUNA-comment-w ₁	0.324	0.031	0.595	14	0.244	0.004	0.562	24	
qUNA-comment-w ₁ +weight	0.159	0.016	0.579	17	0.111	0.002	0.575	27	
qUNA-comment-w1+disambiguation	0.412	0.163	0.573	209	0.133	0.005	0.578	43	


List of Contributions

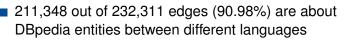
Introduction

Testing UNA The Gold Standard Validating UNA Reliability

- Algorithm
- Evaluation
- Contributions

Discussion

- 2 Algorithm but does not scale to 177k.
- **3 Datasets**: redirect, weights, encoding equivalence, disambiguation, etc.
- 4 Gold standard
- **5 Results**: and how we improved it using additional information.



Discussion

Introduction

Testing UNA The Gold Standard Validating UNA Reliability

- Algorithm
- Evaluation
- Contributions
- Discussion

- 177k nodes in the largest weakly connected component.
- only 5 have different label-like or comment-like sources: UNA is not about the source of errors.
- Next: evaluate using more methods
- Next: Deep Learning on the identity graph!

Thank You for your attention!

Contact: shuai.wang@vu.nl

