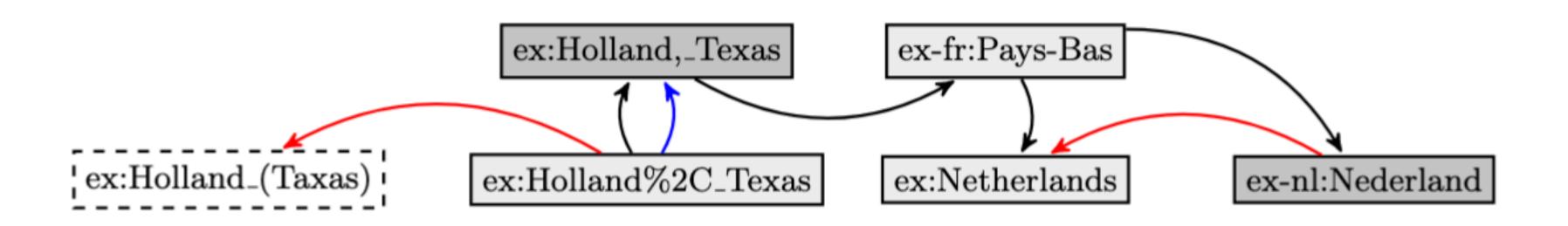
Examining the Evolution of Identity and Redirection in the LOD Cloud

Shuai Wang

with Idries Nasim, Joe Raad, Peter Bloem, Frank van Harmelen WAI, 19th September

https://github.com/shuaiwangvu/identity_graph_evolution https://github.com/shuaiwangvu/redirection


OUTLINE

- Introduction and related work
- Evolution of identity graphs
 - Constructing the new identity graphs
 - Compare the identity graphs
- Analysis of redirection
 - Constructing the redirect graphs
 - A qualitative analysis
 - A quantitative analysis
- Discussion and future work ightarrow

INTRODUCTION AND RELATED WORK

- Identity crisis [Halpin, et al.] \bullet
- •
- Semantic web evolution [multiple] •
- Semantically broken links [Regino et al] lacksquare

17.9% entities in DBpedia do not exist after 2 years [De Melo, 2013]

Black = identity links Red = redirection Blue = encoding equivalence

RESEARCH QUESTIONS

RQ1: How has the identity graph in the semantic web changed?

RQ2: Can graphs of redirects provide an indication of the evolution of the identity graphs in the semantic web?

RQ3: Can we approximate the implicit semantics of redirection?

RQ4: What are the properties of the redirection graph?

CONSTRUCTING THE NEW IDENTITY GRAPHS

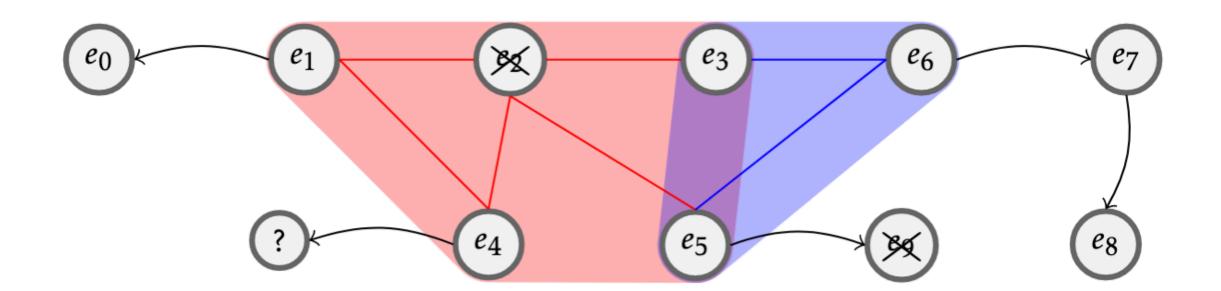
LOD Laundromat in 2015 shows that

- 91.2% of entities are in linksets
- 8.1% of entities are in major hubs with more than 10 identity links.

Construct the new identity graph with

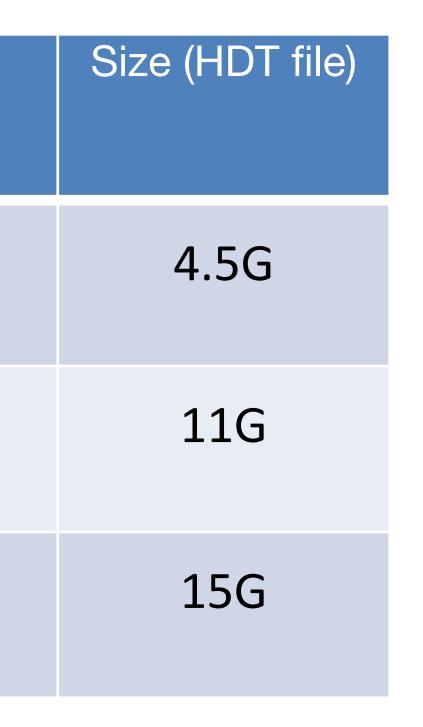
- linksets: DBpedia Databus
- Major linked data hub: Yago, Pleiades, WordNet, • etc.

Table 1: Sources of the new identity graph


Name/Alias	owl:sameAs	#entities	date of up
DBpedia English links	124.0M	51.3M	Mar
DBpedia-Wikidata links	75.3M	102.5M	Dec
DBpedia external links	61.9M	109.9M	Dec
DBpedia commons links	146.2K	287.3K	Dec
Wikidata	3.7M	6.5K	May
CaLiGraph	8.2M	16.6K	Apr
IMDB	63.2K	92.6K	-
Yago4	116.3M	183.2M	Mar
Pleiades	117.3K	234.2K	
WordNet	11 7.8 K	235.3K	
KB	6.3M	12.8M	Jul
GND	15.3M	24.0M	Sep
New identity graph	409.3M	433.4M	Jun

- HTTP 200: 'OK'
- 400+ HTTP error: Not Found: 'NF'
- a literal or the request fails: 'ER'
- Timeout: 'TO'

- All redirects of 300+
- Redirects Until Found: 'RUT'
- Redirect Until Not Found: 'RUNF'
- Redirect Until Error: 'RUE'
- Redirect Until Found: 'RUF'


VU

COMPARING THE GRAPHS

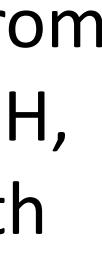
	# Triples	#Entities
G (old graph)	558M	179M
H (new graph)	409M	443M
I (integrated graph)	951M	555M

57.9M entities are shared = 32.3% of G and 13.4% of H.

H consists of many more entities than G.

The triple:entity ratio has dropped from 3.12 in G to 0.94 in H, which indicate that redundant edges might be fewer in H.

The HDT file of I is 3.3 times bigger than G.

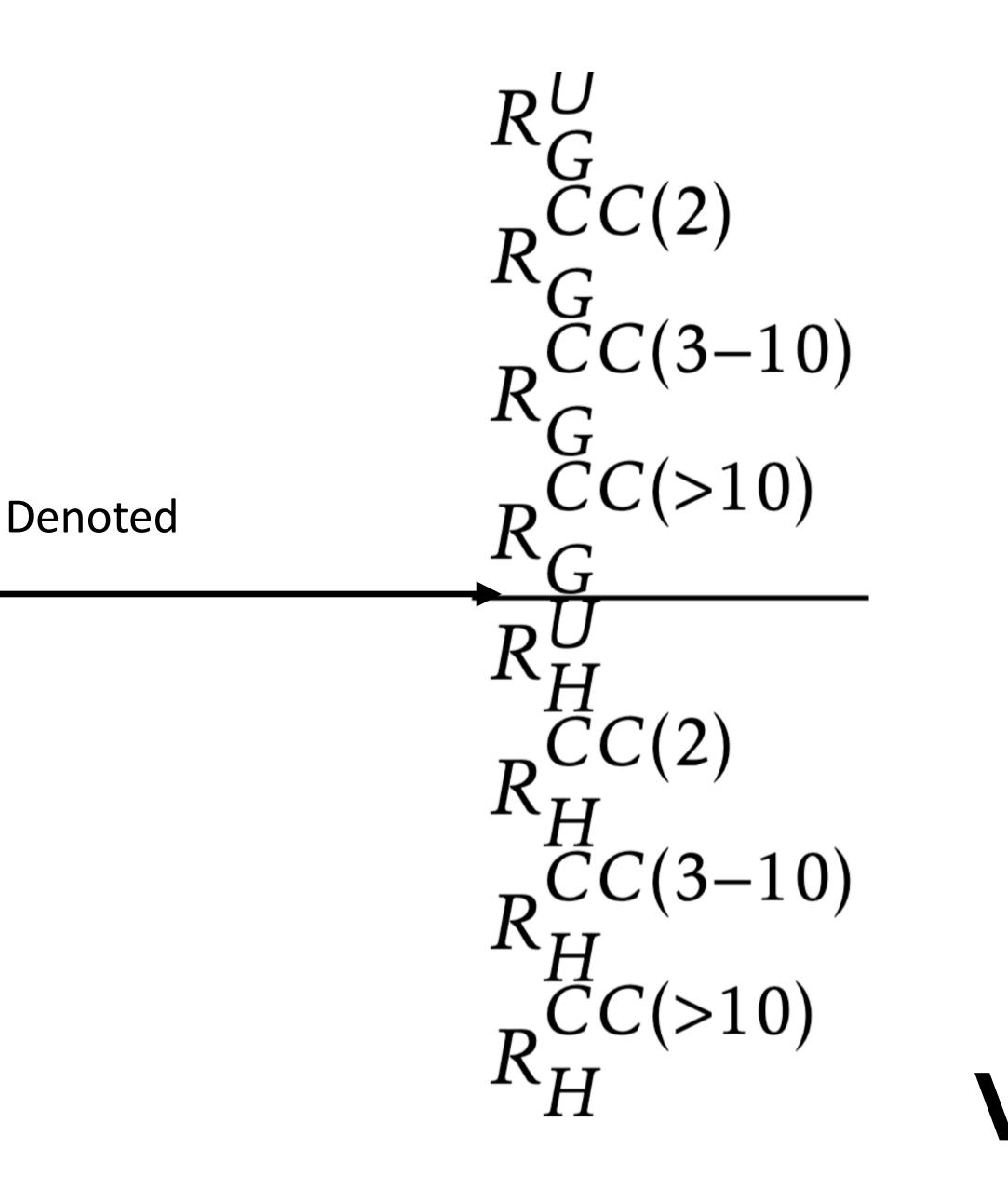

COMPARING THE GRAPHS

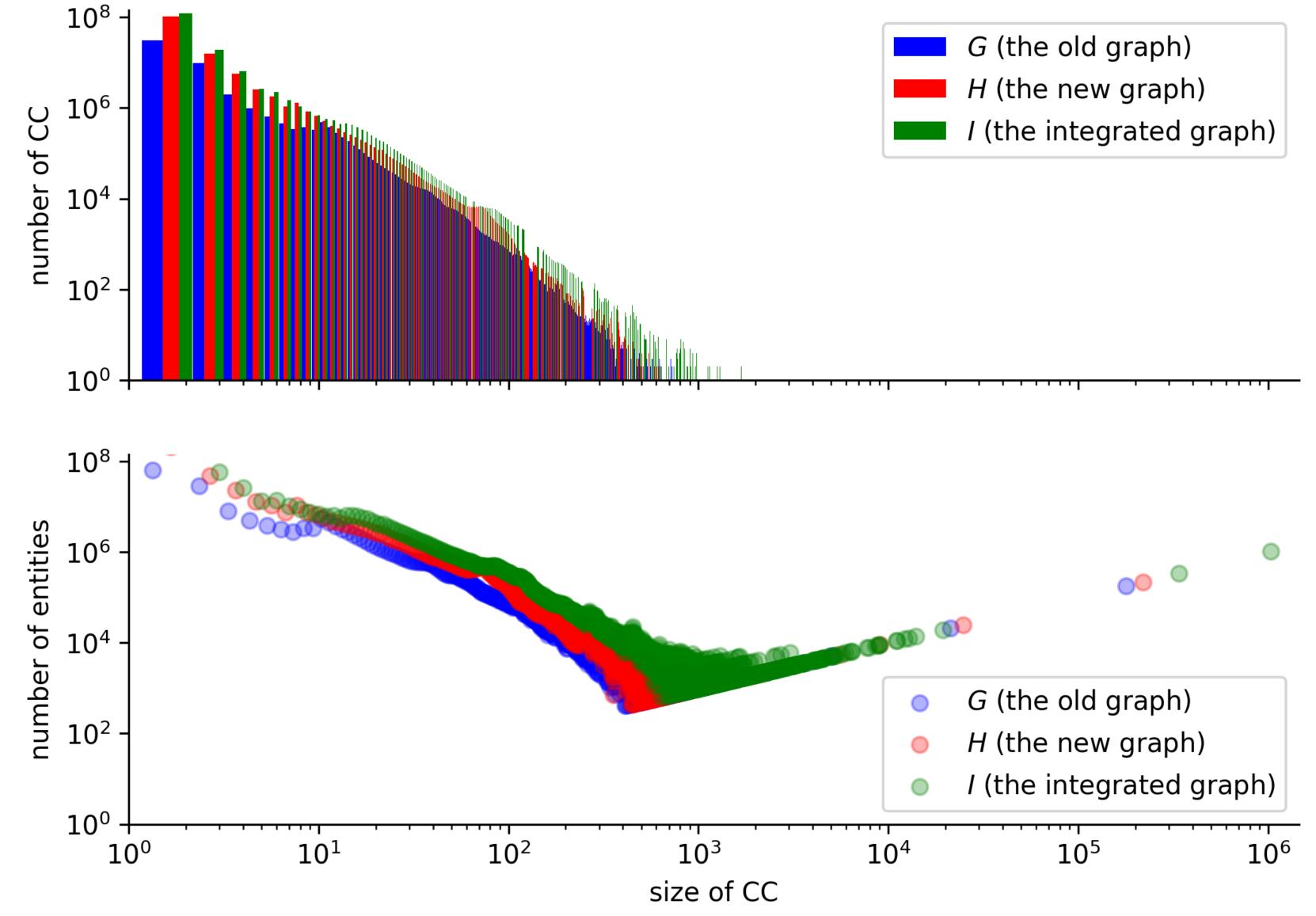
	Biggest CC	#CC
G (old graph)	178K	49M
H (new graph)	219K	137M
I (integrated graph)	1M	164M

For the largest CC of I.

- Size (HDT file) 4.5G 11G 15G
- 293700 (28%) nodes from G, 450107 (44%) from H, 290877(28%) from both

• 37176(46,5%) CC's from G, 42718(53,4%) CC's from H




For H and G: Sampling 100K uniformly Sampling 20K from

- CC(2)
- CC(3-10)
- CC(>10)



COMPARING THE OLD AND NEW GRAPHS

ANALYSIS OF THE REDIRECTION GRAPH

Table 2: Behavior of HTTP GET request of entities

Graph	NF	OK	ER	ТО	RUT	RUNF	RUE	RUF	Valid	Invalid
R_G^U $R_G^{CC(2)}$	13.3%	1.1%	23.9%	8.2%	8.1%	12.8%	0.01%	32.6%	33.7%	66.3%
$R_G^{CC(2)}$	4.0%	0.7%	39.5%	12.3%	0.9%	5.5%	0.0%	37.1%	37.8%	62.2%
$R_G^{CC(2)}$ $R_G^{CC(3-10)}$ $R_G^{CC(>10)}$	8.4%	0.3%	43.4%	5.8%	0.9%	5.8%	5.0%	30.4%	30.7%	69.3%
$R_G^{CC(>10)}$	11.0%	0.8%	26.5%	23.2%	2.3%	10.1%	0.1%	26.0%	26.8%	73.2%
R_H^U	14.8%	3.0%	18.5%	2.4%	4.5%	12.3%	0.1%	44.4%	47.4%	52.6%
$\frac{R_G^{U}}{R_H^{U}}$ $R_H^{CC(2)}$ $R_H^{CC(3-10)}$ $R_H^{CC(>10)}$	15.8%	6.7%	3.2%	3.4%	8.0%	8.4%	0.005%	54.5%	61.2%	38.8%
$R_H^{CC(3-10)}$	6.9%	2.4%	59.1%	4.9%	2.5%	6.2%	0.1%	17.9%	20.4%	79.6%
$R_H^{CC(>10)}$	3.4%	4.1%	67.8%	3.9%	2.3%	4.4%	0.05%	14.1%	18.2%	81.8%

Valid = OK + RUF(redirect until found)

Invalid = the rest

ANALYSIS OF THE REDIRECTION GRAPH

Table 2: Behavior of HTTP GET request of entities

Graph	NF	OK	ER	ТО	RUT	RUNF	RUE	RUF	Valid	Invalid
R_G^U $R^{CC(2)}$	13.3%	1.1%	23.9%	8.2%	8.1%	12.8%	0.01%	32.6%	33.7%	66.3%
$R_G^{CC(2)}$	4.0%	0.7%	39.5%	12.3%	0.9%	5.5%	0.0%	37.1%	37.8%	62.2%
$R_{G}^{CC(2)}$ $R_{G}^{CC(3-10)}$ $R_{G}^{CC(>10)}$	8.4%	0.3%	43.4%	5.8%	0.9%	5.8%	5.0%	30.4%	30.7%	69.3%
$R_G^{CC(>10)}$	11.0%	0.8%	26.5%	23.2%	2.3%	10.1%	0.1%	26.0%	26.8%	73.2%
R_H^U	14.8%	3.0%	18.5%	2.4%	4.5%	12.3%	0.1%	44.4%	47.4%	52.6%
$R_H^{CC(2)}$	15.8%	6.7%	3.2%	3.4%	8.0%	8.4%	0.005%	54.5%	61.2%	38.8%
$R_H^{CC(3-10)}$	6.9%	2.4%	59.1%	4.9%	2.5%	6.2%	0.1%	17.9%	20.4%	79.6%
$\frac{R_G^{U}}{R_H^{U}}$ $R_H^{CC(2)}$ $R_H^{CC(3-10)}$ $R_H^{CC(>10)}$	3.4%	4.1%	67.8%	3.9%	2.3%	4.4%	0.05%	14.1%	18.2%	81.8%

G has more valid entities than H.

Only 1-3% returns meaningful info directly.

>50% has redirection for uniform sampling

ANALYSIS OF THE REDIRECTION GRAPH

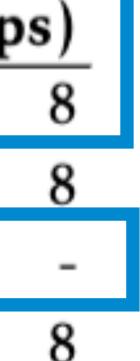
Table 2: Behavior of HTTP GET request of entities

Graph	NF	OK	ER	ТО	RUT	RUNF	RUE	RUF	Valid	Invalid
R_G^U	13.3%	1.1%	23.9%	8.2%	8.1%	12.8%	0.01%	32.6%	33.7%	66.3%
R_{G}^{U} $R_{G}^{CC(2)}$ $R_{G}^{CC(3-10)}$ $R_{G}^{CC(>10)}$	4.0%	0.7%	39.5%	12.3%	0.9%	5.5%	0.0%	37.1%	37.8%	62.2%
$R_G^{CC(3-10)}$	8.4%	0.3%	43.4%	5.8%	0.9%	5.8%	5.0%	30.4%	30.7%	69.3%
1 C	11.0%	0.8%	26.5%	23.2%	2.3%	10.1%	0.1%	26.0%	26.8%	73.2%
R_{H}^{U} $R^{CC(2)}$	14.8%	3.0%	18.5%	2.4%	4.5%	12.3%	0.1%	44.4%	47.4%	52.6%
$R_H^{CC(2)}$	15.8%	6.7%	3.2%	3.4%	8.0%	8.4%	0.005%	54.5%	61.2%	38.8%
$R_{H}^{CC(2)}$ $R_{H}^{CC(3-10)}$ $R_{H}^{CC(>10)}$	6.9%	2.4%	59.1%	4.9%	2.5%	6.2%	0.1%	17.9%	20.4%	79.6%
$R_H^{CC(>10)}$	3.4%	4.1%	67.8%	3.9%	2.3%	4.4%	0.05%	14.1%	18.2%	81.8%

#Valid decreases as the size of CCs increase, especially H.

Opposite trend for NF, TO, RUNF, RUE

Different for OK is too small to draw a conclusion.



ANALYSIS OF THE REDIRECTION GRAPH G

From now on, the results are only about the old graph.

Table 2: Properties of the redirection graph											
	#Entities	#Entities Redirected	#Nodes	#Edges	#Hops	Longest Path (#Hop					
R^U	100K	53,487 (53.49%)	169,021	116,031	1.71						
$R^{CC(2)}$	20K	8,693 (43.46%)	30,091	21,602	1.64						
$R^{CC(3-10)}$	20K	8,412 (42.06%)	29,697	21,490	-						
$R^{CC(>10)}$	20K	7,704 (38.52%)	24,914	18,102	2.05						

LONG REDIRECTION PATHS

['http://dbpedia.org/resource/Mirage_%28pop_group%29', 'http://dbpedia.org/resource/Mirage_(pop_group)', 'https://dbpedia.org/resource/Mirage_(pop_group)', 'http://dbpedia.org/page/Mirage (pop group)', 'https://dbpedia.org/page/Mirage_(pop_group)', 'http://dbpedia.org/resource/Mirage_(disambiguation)', 'https://dbpedia.org/resource/Mirage_(disambiguation)', 'http://dbpedia.org/page/Mirage_(disambiguation)', 'https://dbpedia.org/page/Mirage_(disambiguation)']

IMPLICIT SEMANTICS OF REDIRECTION (4,000 EDGES)

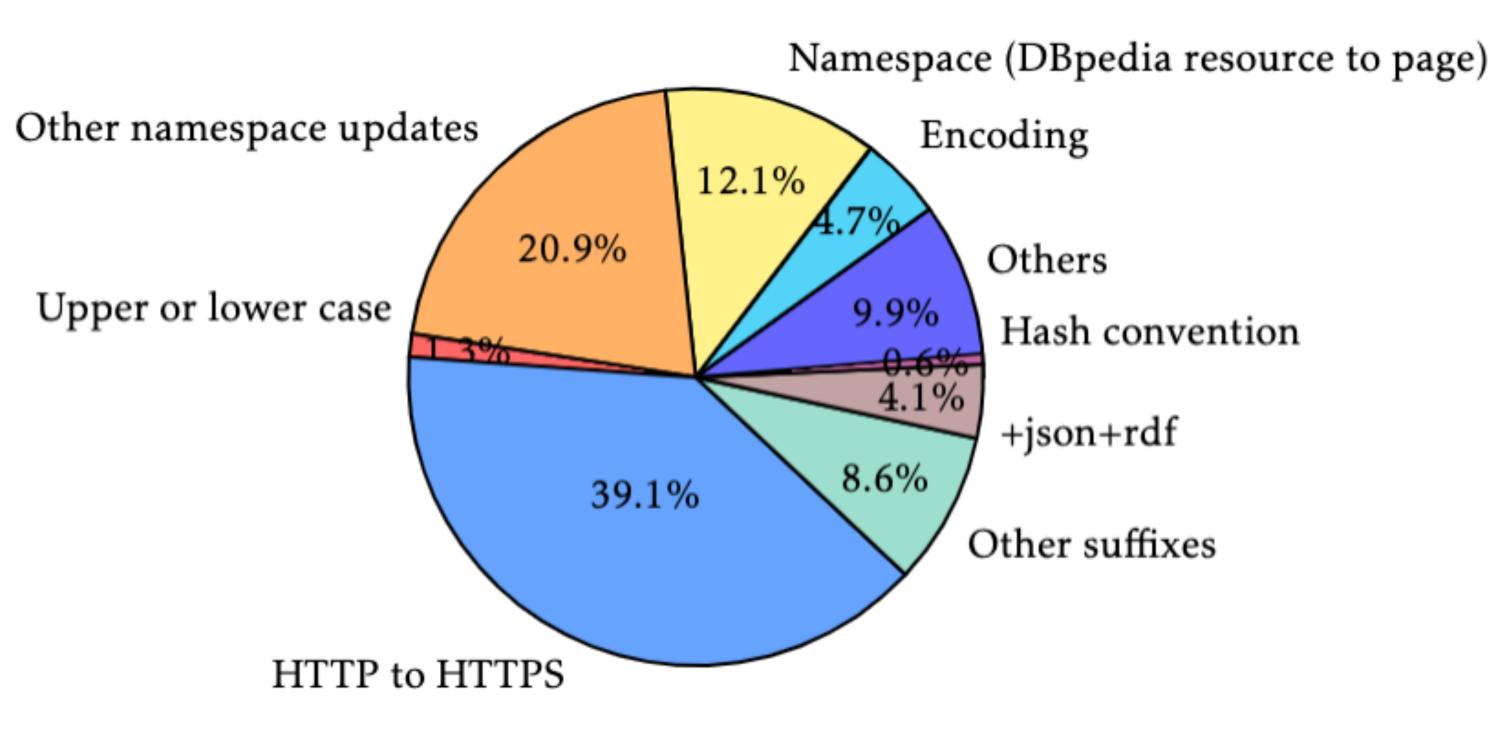


Fig. 2: Proportion of redirection behavior among sampled entities

- 45.1% (encoding, http->https, upper/lower case)
- 16.8% (DBpedia resource to page, etc.)

Approx. 45.1% - 83.2% can be taken as identity links

100 CHAINS OF REDIRECTION

- On average 1.7 hops. We examine redirection chains with over 2 hops - Similar number of hops for RUF, RUE, RUNF, RUT. So we sample uniformly
- 85% happens within a domain
- Wikidata (28%) and DBpedia (25%) are among the most observed
- Chains of DBpedia are often among the longest.
- Some others were observed for <u>bibsonomy.org</u> (5%) and <u>via.org</u> (1%)

DISCUSSION AND FUTURE WORK

- Few entities can be redirected from G to H
- Redirection is a well-observed in identity graphs
- When only 1-3% can be dereferenced, it hurts accessibility and interoperability
- We observed some correlation between size of CC and the hops of redirect
- HTTPS is well adopted in the semantic web community
- Why we have opposite trend for NF, TO, RUNF, RUE?

